1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "tomcrypt.h"
/**
@file pelican.c
Pelican MAC, initialize state, by Tom St Denis
*/
#ifdef LTC_PELICAN
#define ENCRYPT_ONLY
#define PELI_TAB
#include "../../ciphers/aes/aes_tab.c"
/**
Initialize a Pelican state
@param pelmac The Pelican state to initialize
@param key The secret key
@param keylen The length of the secret key (octets)
@return CRYPT_OK if successful
*/
int pelican_init(pelican_state *pelmac, const unsigned char *key, unsigned long keylen)
{
int err;
LTC_ARGCHK(pelmac != NULL);
LTC_ARGCHK(key != NULL);
#ifdef LTC_FAST
if (16 % sizeof(LTC_FAST_TYPE)) {
return CRYPT_INVALID_ARG;
}
#endif
if ((err = aes_setup(key, keylen, 0, &pelmac->K)) != CRYPT_OK) {
return err;
}
zeromem(pelmac->state, 16);
aes_ecb_encrypt(pelmac->state, pelmac->state, &pelmac->K);
pelmac->buflen = 0;
return CRYPT_OK;
}
static void four_rounds(pelican_state *pelmac)
{
ulong32 s0, s1, s2, s3, t0, t1, t2, t3;
int r;
LOAD32H(s0, pelmac->state );
LOAD32H(s1, pelmac->state + 4);
LOAD32H(s2, pelmac->state + 8);
LOAD32H(s3, pelmac->state + 12);
for (r = 0; r < 4; r++) {
t0 =
Te0(byte(s0, 3)) ^
Te1(byte(s1, 2)) ^
Te2(byte(s2, 1)) ^
Te3(byte(s3, 0));
t1 =
Te0(byte(s1, 3)) ^
Te1(byte(s2, 2)) ^
Te2(byte(s3, 1)) ^
Te3(byte(s0, 0));
t2 =
Te0(byte(s2, 3)) ^
Te1(byte(s3, 2)) ^
Te2(byte(s0, 1)) ^
Te3(byte(s1, 0));
t3 =
Te0(byte(s3, 3)) ^
Te1(byte(s0, 2)) ^
Te2(byte(s1, 1)) ^
Te3(byte(s2, 0));
s0 = t0; s1 = t1; s2 = t2; s3 = t3;
}
STORE32H(s0, pelmac->state );
STORE32H(s1, pelmac->state + 4);
STORE32H(s2, pelmac->state + 8);
STORE32H(s3, pelmac->state + 12);
}
/**
Process a block of text through Pelican
@param pelmac The Pelican MAC state
@param in The input
@param inlen The length input (octets)
@return CRYPT_OK on success
*/
int pelican_process(pelican_state *pelmac, const unsigned char *in, unsigned long inlen)
{
LTC_ARGCHK(pelmac != NULL);
LTC_ARGCHK(in != NULL);
/* check range */
if (pelmac->buflen < 0 || pelmac->buflen > 15) {
return CRYPT_INVALID_ARG;
}
#ifdef LTC_FAST
if (pelmac->buflen == 0) {
while (inlen & ~15) {
int x;
for (x = 0; x < 16; x += sizeof(LTC_FAST_TYPE)) {
*((LTC_FAST_TYPE*)((unsigned char *)pelmac->state + x)) ^= *((LTC_FAST_TYPE*)((unsigned char *)in + x));
}
four_rounds(pelmac);
in += 16;
inlen -= 16;
}
}
#endif
while (inlen--) {
pelmac->state[pelmac->buflen++] ^= *in++;
if (pelmac->buflen == 16) {
four_rounds(pelmac);
pelmac->buflen = 0;
}
}
return CRYPT_OK;
}
/**
Terminate Pelican MAC
@param pelmac The Pelican MAC state
@param out [out] The TAG
@return CRYPT_OK on sucess
*/
int pelican_done(pelican_state *pelmac, unsigned char *out)
{
LTC_ARGCHK(pelmac != NULL);
LTC_ARGCHK(out != NULL);
/* check range */
if (pelmac->buflen < 0 || pelmac->buflen > 16) {
return CRYPT_INVALID_ARG;
}
if (pelmac->buflen == 16) {
four_rounds(pelmac);
pelmac->buflen = 0;
}
pelmac->state[pelmac->buflen++] ^= 0x80;
aes_ecb_encrypt(pelmac->state, out, &pelmac->K);
aes_done(&pelmac->K);
return CRYPT_OK;
}
#endif
/* $Source$ */
/* $Revision$ */
/* $Date$ */
|