1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
*/
#include "tomcrypt.h"
/**
@file chc.c
CHC support. (Tom St Denis)
*/
#ifdef CHC_HASH
#define UNDEFED_HASH -17
/* chc settings */
static int cipher_idx=UNDEFED_HASH, /* which cipher */
cipher_blocksize; /* blocksize of cipher */
const struct ltc_hash_descriptor chc_desc = {
"chc_hash", 12, 0, 0, { 0 }, 0,
&chc_init,
&chc_process,
&chc_done,
&chc_test,
NULL
};
/**
Initialize the CHC state with a given cipher
@param cipher The index of the cipher you wish to bind
@return CRYPT_OK if successful
*/
int chc_register(int cipher)
{
int err, kl, idx;
if ((err = cipher_is_valid(cipher)) != CRYPT_OK) {
return err;
}
/* will it be valid? */
kl = cipher_descriptor[cipher].block_length;
/* must be >64 bit block */
if (kl <= 8) {
return CRYPT_INVALID_CIPHER;
}
/* can we use the ideal keysize? */
if ((err = cipher_descriptor[cipher].keysize(&kl)) != CRYPT_OK) {
return err;
}
/* we require that key size == block size be a valid choice */
if (kl != cipher_descriptor[cipher].block_length) {
return CRYPT_INVALID_CIPHER;
}
/* determine if chc_hash has been register_hash'ed already */
if ((err = hash_is_valid(idx = find_hash("chc_hash"))) != CRYPT_OK) {
return err;
}
/* store into descriptor */
hash_descriptor[idx].hashsize =
hash_descriptor[idx].blocksize = cipher_descriptor[cipher].block_length;
/* store the idx and block size */
cipher_idx = cipher;
cipher_blocksize = cipher_descriptor[cipher].block_length;
return CRYPT_OK;
}
/**
Initialize the hash state
@param md The hash state you wish to initialize
@return CRYPT_OK if successful
*/
int chc_init(hash_state *md)
{
symmetric_key *key;
unsigned char buf[MAXBLOCKSIZE];
int err;
LTC_ARGCHK(md != NULL);
/* is the cipher valid? */
if ((err = cipher_is_valid(cipher_idx)) != CRYPT_OK) {
return err;
}
if (cipher_blocksize != cipher_descriptor[cipher_idx].block_length) {
return CRYPT_INVALID_CIPHER;
}
if ((key = XMALLOC(sizeof(*key))) == NULL) {
return CRYPT_MEM;
}
/* zero key and what not */
zeromem(buf, cipher_blocksize);
if ((err = cipher_descriptor[cipher_idx].setup(buf, cipher_blocksize, 0, key)) != CRYPT_OK) {
XFREE(key);
return err;
}
/* encrypt zero block */
cipher_descriptor[cipher_idx].ecb_encrypt(buf, md->chc.state, key);
/* zero other members */
md->chc.length = 0;
md->chc.curlen = 0;
zeromem(md->chc.buf, sizeof(md->chc.buf));
XFREE(key);
return CRYPT_OK;
}
/*
key <= state
T0,T1 <= block
T0 <= encrypt T0
state <= state xor T0 xor T1
*/
static int chc_compress(hash_state *md, unsigned char *buf)
{
unsigned char T[2][MAXBLOCKSIZE];
symmetric_key *key;
int err, x;
if ((key = XMALLOC(sizeof(*key))) == NULL) {
return CRYPT_MEM;
}
if ((err = cipher_descriptor[cipher_idx].setup(md->chc.state, cipher_blocksize, 0, key)) != CRYPT_OK) {
XFREE(key);
return err;
}
XMEMCPY(T[1], buf, cipher_blocksize);
cipher_descriptor[cipher_idx].ecb_encrypt(buf, T[0], key);
for (x = 0; x < cipher_blocksize; x++) {
md->chc.state[x] ^= T[0][x] ^ T[1][x];
}
XFREE(key);
#ifdef LTC_CLEAN_STACK
zeromem(T, sizeof(T));
zeromem(&key, sizeof(key));
#endif
return CRYPT_OK;
}
/* function for processing blocks */
int _chc_process(hash_state * md, const unsigned char *buf, unsigned long len);
HASH_PROCESS(_chc_process, chc_compress, chc, (unsigned long)cipher_blocksize)
/**
Process a block of memory though the hash
@param md The hash state
@param in The data to hash
@param inlen The length of the data (octets)
@return CRYPT_OK if successful
*/
int chc_process(hash_state * md, const unsigned char *in, unsigned long inlen)
{
int err;
LTC_ARGCHK(md != NULL);
LTC_ARGCHK(in != NULL);
/* is the cipher valid? */
if ((err = cipher_is_valid(cipher_idx)) != CRYPT_OK) {
return err;
}
if (cipher_blocksize != cipher_descriptor[cipher_idx].block_length) {
return CRYPT_INVALID_CIPHER;
}
return _chc_process(md, in, inlen);
}
/**
Terminate the hash to get the digest
@param md The hash state
@param out [out] The destination of the hash (length of the block size of the block cipher)
@return CRYPT_OK if successful
*/
int chc_done(hash_state *md, unsigned char *out)
{
int err;
LTC_ARGCHK(md != NULL);
LTC_ARGCHK(out != NULL);
/* is the cipher valid? */
if ((err = cipher_is_valid(cipher_idx)) != CRYPT_OK) {
return err;
}
if (cipher_blocksize != cipher_descriptor[cipher_idx].block_length) {
return CRYPT_INVALID_CIPHER;
}
if (md->chc.curlen >= sizeof(md->chc.buf)) {
return CRYPT_INVALID_ARG;
}
/* increase the length of the message */
md->chc.length += md->chc.curlen * 8;
/* append the '1' bit */
md->chc.buf[md->chc.curlen++] = (unsigned char)0x80;
/* if the length is currently above l-8 bytes we append zeros
* then compress. Then we can fall back to padding zeros and length
* encoding like normal.
*/
if (md->chc.curlen > (unsigned long)(cipher_blocksize - 8)) {
while (md->chc.curlen < (unsigned long)cipher_blocksize) {
md->chc.buf[md->chc.curlen++] = (unsigned char)0;
}
chc_compress(md, md->chc.buf);
md->chc.curlen = 0;
}
/* pad upto l-8 bytes of zeroes */
while (md->chc.curlen < (unsigned long)(cipher_blocksize - 8)) {
md->chc.buf[md->chc.curlen++] = (unsigned char)0;
}
/* store length */
STORE64L(md->chc.length, md->chc.buf+(cipher_blocksize-8));
chc_compress(md, md->chc.buf);
/* copy output */
XMEMCPY(out, md->chc.state, cipher_blocksize);
#ifdef LTC_CLEAN_STACK
zeromem(md, sizeof(hash_state));
#endif
return CRYPT_OK;
}
/**
Self-test the hash
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int chc_test(void)
{
static const struct {
unsigned char *msg,
md[MAXBLOCKSIZE];
int len;
} tests[] = {
{
(unsigned char *)"hello world",
{ 0xcf, 0x57, 0x9d, 0xc3, 0x0a, 0x0e, 0xea, 0x61,
0x0d, 0x54, 0x47, 0xc4, 0x3c, 0x06, 0xf5, 0x4e },
16
}
};
int x, oldhashidx, idx;
unsigned char out[MAXBLOCKSIZE];
hash_state md;
/* AES can be under rijndael or aes... try to find it */
if ((idx = find_cipher("aes")) == -1) {
if ((idx = find_cipher("rijndael")) == -1) {
return CRYPT_NOP;
}
}
oldhashidx = cipher_idx;
chc_register(idx);
for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) {
chc_init(&md);
chc_process(&md, tests[x].msg, strlen((char *)tests[x].msg));
chc_done(&md, out);
if (XMEMCMP(out, tests[x].md, tests[x].len)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
if (oldhashidx != UNDEFED_HASH) {
chc_register(oldhashidx);
}
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/hashes/chc/chc.c,v $ */
/* $Revision: 1.6 $ */
/* $Date: 2006/11/01 09:28:17 $ */
|