1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/**
@file ocb_init.c
OCB implementation, initialize state, by Tom St Denis
*/
#include "tomcrypt.h"
#ifdef LTC_OCB_MODE
static const struct {
int len;
unsigned char poly_div[MAXBLOCKSIZE],
poly_mul[MAXBLOCKSIZE];
} polys[] = {
{
8,
{ 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0D },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1B }
}, {
16,
{ 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x43 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x87 }
}
};
/**
Initialize an OCB context.
@param ocb [out] The destination of the OCB state
@param cipher The index of the desired cipher
@param key The secret key
@param keylen The length of the secret key (octets)
@param nonce The session nonce (length of the block size of the cipher)
@return CRYPT_OK if successful
*/
int ocb_init(ocb_state *ocb, int cipher,
const unsigned char *key, unsigned long keylen, const unsigned char *nonce)
{
int poly, x, y, m, err;
LTC_ARGCHK(ocb != NULL);
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(nonce != NULL);
/* valid cipher? */
if ((err = cipher_is_valid(cipher)) != CRYPT_OK) {
return err;
}
/* determine which polys to use */
ocb->block_len = cipher_descriptor[cipher].block_length;
x = (int)(sizeof(polys)/sizeof(polys[0]));
for (poly = 0; poly < x; poly++) {
if (polys[poly].len == ocb->block_len) {
break;
}
}
if (poly == x) {
return CRYPT_INVALID_ARG; /* block_len not found in polys */
}
if (polys[poly].len != ocb->block_len) {
return CRYPT_INVALID_ARG;
}
/* schedule the key */
if ((err = cipher_descriptor[cipher].setup(key, keylen, 0, &ocb->key)) != CRYPT_OK) {
return err;
}
/* find L = E[0] */
zeromem(ocb->L, ocb->block_len);
if ((err = cipher_descriptor[cipher].ecb_encrypt(ocb->L, ocb->L, &ocb->key)) != CRYPT_OK) {
return err;
}
/* find R = E[N xor L] */
for (x = 0; x < ocb->block_len; x++) {
ocb->R[x] = ocb->L[x] ^ nonce[x];
}
if ((err = cipher_descriptor[cipher].ecb_encrypt(ocb->R, ocb->R, &ocb->key)) != CRYPT_OK) {
return err;
}
/* find Ls[i] = L << i for i == 0..31 */
XMEMCPY(ocb->Ls[0], ocb->L, ocb->block_len);
for (x = 1; x < 32; x++) {
m = ocb->Ls[x-1][0] >> 7;
for (y = 0; y < ocb->block_len-1; y++) {
ocb->Ls[x][y] = ((ocb->Ls[x-1][y] << 1) | (ocb->Ls[x-1][y+1] >> 7)) & 255;
}
ocb->Ls[x][ocb->block_len-1] = (ocb->Ls[x-1][ocb->block_len-1] << 1) & 255;
if (m == 1) {
for (y = 0; y < ocb->block_len; y++) {
ocb->Ls[x][y] ^= polys[poly].poly_mul[y];
}
}
}
/* find Lr = L / x */
m = ocb->L[ocb->block_len-1] & 1;
/* shift right */
for (x = ocb->block_len - 1; x > 0; x--) {
ocb->Lr[x] = ((ocb->L[x] >> 1) | (ocb->L[x-1] << 7)) & 255;
}
ocb->Lr[0] = ocb->L[0] >> 1;
if (m == 1) {
for (x = 0; x < ocb->block_len; x++) {
ocb->Lr[x] ^= polys[poly].poly_div[x];
}
}
/* set Li, checksum */
zeromem(ocb->Li, ocb->block_len);
zeromem(ocb->checksum, ocb->block_len);
/* set other params */
ocb->block_index = 1;
ocb->cipher = cipher;
return CRYPT_OK;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */
|