summaryrefslogtreecommitdiffhomepage
path: root/libtomcrypt/src/ciphers/twofish/twofish.c
blob: 8f81bdd293f136aa71c571311d5a4c2fedd82895 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
 *
 * LibTomCrypt is a library that provides various cryptographic
 * algorithms in a highly modular and flexible manner.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
 */

 /** 
   @file twofish.c
   Implementation of Twofish by Tom St Denis 
 */
#include "tomcrypt.h"

#ifdef TWOFISH

/* first TWOFISH_ALL_TABLES must ensure TWOFISH_TABLES is defined */
#ifdef TWOFISH_ALL_TABLES
#ifndef TWOFISH_TABLES
#define TWOFISH_TABLES
#endif
#endif

const struct ltc_cipher_descriptor twofish_desc =
{
    "twofish",
    7,
    16, 32, 16, 16,
    &twofish_setup,
    &twofish_ecb_encrypt,
    &twofish_ecb_decrypt,
    &twofish_test,
    &twofish_done,
    &twofish_keysize,
    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};

/* the two polynomials */
#define MDS_POLY          0x169
#define RS_POLY           0x14D

/* The 4x4 MDS Linear Transform */
#if 0
static const unsigned char MDS[4][4] = {
    { 0x01, 0xEF, 0x5B, 0x5B },
    { 0x5B, 0xEF, 0xEF, 0x01 },
    { 0xEF, 0x5B, 0x01, 0xEF },
    { 0xEF, 0x01, 0xEF, 0x5B }
};
#endif

/* The 4x8 RS Linear Transform */
static const unsigned char RS[4][8] = {
    { 0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E },
    { 0xA4, 0x56, 0x82, 0xF3, 0X1E, 0XC6, 0X68, 0XE5 },
    { 0X02, 0XA1, 0XFC, 0XC1, 0X47, 0XAE, 0X3D, 0X19 },
    { 0XA4, 0X55, 0X87, 0X5A, 0X58, 0XDB, 0X9E, 0X03 }
};

/* sbox usage orderings */
static const unsigned char qord[4][5] = {
   { 1, 1, 0, 0, 1 },
   { 0, 1, 1, 0, 0 },
   { 0, 0, 0, 1, 1 },
   { 1, 0, 1, 1, 0 }
};

#ifdef TWOFISH_TABLES

#include "twofish_tab.c"

#define sbox(i, x) ((ulong32)SBOX[i][(x)&255])

#else

/* The Q-box tables */
static const unsigned char qbox[2][4][16] = {
{
   { 0x8, 0x1, 0x7, 0xD, 0x6, 0xF, 0x3, 0x2, 0x0, 0xB, 0x5, 0x9, 0xE, 0xC, 0xA, 0x4 },
   { 0xE, 0XC, 0XB, 0X8, 0X1, 0X2, 0X3, 0X5, 0XF, 0X4, 0XA, 0X6, 0X7, 0X0, 0X9, 0XD },
   { 0XB, 0XA, 0X5, 0XE, 0X6, 0XD, 0X9, 0X0, 0XC, 0X8, 0XF, 0X3, 0X2, 0X4, 0X7, 0X1 },
   { 0XD, 0X7, 0XF, 0X4, 0X1, 0X2, 0X6, 0XE, 0X9, 0XB, 0X3, 0X0, 0X8, 0X5, 0XC, 0XA }
},
{
   { 0X2, 0X8, 0XB, 0XD, 0XF, 0X7, 0X6, 0XE, 0X3, 0X1, 0X9, 0X4, 0X0, 0XA, 0XC, 0X5 },
   { 0X1, 0XE, 0X2, 0XB, 0X4, 0XC, 0X3, 0X7, 0X6, 0XD, 0XA, 0X5, 0XF, 0X9, 0X0, 0X8 },
   { 0X4, 0XC, 0X7, 0X5, 0X1, 0X6, 0X9, 0XA, 0X0, 0XE, 0XD, 0X8, 0X2, 0XB, 0X3, 0XF },
   { 0xB, 0X9, 0X5, 0X1, 0XC, 0X3, 0XD, 0XE, 0X6, 0X4, 0X7, 0XF, 0X2, 0X0, 0X8, 0XA }
}
};

/* computes S_i[x] */
#ifdef LTC_CLEAN_STACK
static ulong32 _sbox(int i, ulong32 x)
#else
static ulong32 sbox(int i, ulong32 x)
#endif
{
   unsigned char a0,b0,a1,b1,a2,b2,a3,b3,a4,b4,y;

   /* a0,b0 = [x/16], x mod 16 */
   a0 = (unsigned char)((x>>4)&15);
   b0 = (unsigned char)((x)&15);

   /* a1 = a0 ^ b0 */
   a1 = a0 ^ b0;

   /* b1 = a0 ^ ROR(b0, 1) ^ 8a0 */
   b1 = (a0 ^ ((b0<<3)|(b0>>1)) ^ (a0<<3)) & 15;

   /* a2,b2 = t0[a1], t1[b1] */
   a2 = qbox[i][0][(int)a1];
   b2 = qbox[i][1][(int)b1];

   /* a3 = a2 ^ b2 */
   a3 = a2 ^ b2;

   /* b3 = a2 ^ ROR(b2, 1) ^ 8a2 */
   b3 = (a2 ^ ((b2<<3)|(b2>>1)) ^ (a2<<3)) & 15;

   /* a4,b4 = t2[a3], t3[b3] */
   a4 = qbox[i][2][(int)a3];
   b4 = qbox[i][3][(int)b3];

   /* y = 16b4 + a4 */
   y = (b4 << 4) + a4;

   /* return result */
   return (ulong32)y;
}

#ifdef LTC_CLEAN_STACK
static ulong32 sbox(int i, ulong32 x)
{
   ulong32 y;
   y = _sbox(i, x);
   burn_stack(sizeof(unsigned char) * 11);
   return y;
}
#endif /* LTC_CLEAN_STACK */

#endif /* TWOFISH_TABLES */

/* computes ab mod p */
static ulong32 gf_mult(ulong32 a, ulong32 b, ulong32 p)
{
   ulong32 result, B[2], P[2];

   P[1] = p;
   B[1] = b;
   result = P[0] = B[0] = 0;

   /* unrolled branchless GF multiplier */
   result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1); 
   result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1); 
   result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1); 
   result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1); 
   result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1); 
   result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1); 
   result ^= B[a&1]; a >>= 1;  B[1] = P[B[1]>>7] ^ (B[1] << 1); 
   result ^= B[a&1]; 

   return result;
}

/* computes [y0 y1 y2 y3] = MDS . [x0] */
#ifndef TWOFISH_TABLES
static ulong32 mds_column_mult(unsigned char in, int col)
{
   ulong32 x01, x5B, xEF;

   x01 = in;
   x5B = gf_mult(in, 0x5B, MDS_POLY);
   xEF = gf_mult(in, 0xEF, MDS_POLY);

   switch (col) {
       case 0:
          return (x01 << 0 ) |
                 (x5B << 8 ) |
                 (xEF << 16) |
                 (xEF << 24);
       case 1:
          return (xEF << 0 ) |
                 (xEF << 8 ) |
                 (x5B << 16) |
                 (x01 << 24);
       case 2:
          return (x5B << 0 ) |
                 (xEF << 8 ) |
                 (x01 << 16) |
                 (xEF << 24);
       case 3:
          return (x5B << 0 ) |
                 (x01 << 8 ) |
                 (xEF << 16) |
                 (x5B << 24);
   }
   /* avoid warnings, we'd never get here normally but just to calm compiler warnings... */
   return 0;
}

#else /* !TWOFISH_TABLES */

#define mds_column_mult(x, i) mds_tab[i][x]

#endif /* TWOFISH_TABLES */

/* Computes [y0 y1 y2 y3] = MDS . [x0 x1 x2 x3] */
static void mds_mult(const unsigned char *in, unsigned char *out)
{
  int x;
  ulong32 tmp;
  for (tmp = x = 0; x < 4; x++) {
      tmp ^= mds_column_mult(in[x], x);
  }
  STORE32L(tmp, out);
}

#ifdef TWOFISH_ALL_TABLES
/* computes [y0 y1 y2 y3] = RS . [x0 x1 x2 x3 x4 x5 x6 x7] */
static void rs_mult(const unsigned char *in, unsigned char *out)
{
   ulong32 tmp;
   tmp = rs_tab0[in[0]] ^ rs_tab1[in[1]] ^ rs_tab2[in[2]] ^ rs_tab3[in[3]] ^
         rs_tab4[in[4]] ^ rs_tab5[in[5]] ^ rs_tab6[in[6]] ^ rs_tab7[in[7]];
   STORE32L(tmp, out);
}

#else /* !TWOFISH_ALL_TABLES */

/* computes [y0 y1 y2 y3] = RS . [x0 x1 x2 x3 x4 x5 x6 x7] */
static void rs_mult(const unsigned char *in, unsigned char *out)
{
  int x, y;
  for (x = 0; x < 4; x++) {
      out[x] = 0;
      for (y = 0; y < 8; y++) {
          out[x] ^= gf_mult(in[y], RS[x][y], RS_POLY);
      }
  }
}

#endif

/* computes h(x) */
static void h_func(const unsigned char *in, unsigned char *out, unsigned char *M, int k, int offset)
{
  int x;
  unsigned char y[4];
  for (x = 0; x < 4; x++) {
      y[x] = in[x];
 }
  switch (k) {
     case 4:
            y[0] = (unsigned char)(sbox(1, (ulong32)y[0]) ^ M[4 * (6 + offset) + 0]);
            y[1] = (unsigned char)(sbox(0, (ulong32)y[1]) ^ M[4 * (6 + offset) + 1]);
            y[2] = (unsigned char)(sbox(0, (ulong32)y[2]) ^ M[4 * (6 + offset) + 2]);
            y[3] = (unsigned char)(sbox(1, (ulong32)y[3]) ^ M[4 * (6 + offset) + 3]);
     case 3:
            y[0] = (unsigned char)(sbox(1, (ulong32)y[0]) ^ M[4 * (4 + offset) + 0]);
            y[1] = (unsigned char)(sbox(1, (ulong32)y[1]) ^ M[4 * (4 + offset) + 1]);
            y[2] = (unsigned char)(sbox(0, (ulong32)y[2]) ^ M[4 * (4 + offset) + 2]);
            y[3] = (unsigned char)(sbox(0, (ulong32)y[3]) ^ M[4 * (4 + offset) + 3]);
     case 2:
            y[0] = (unsigned char)(sbox(1, sbox(0, sbox(0, (ulong32)y[0]) ^ M[4 * (2 + offset) + 0]) ^ M[4 * (0 + offset) + 0]));
            y[1] = (unsigned char)(sbox(0, sbox(0, sbox(1, (ulong32)y[1]) ^ M[4 * (2 + offset) + 1]) ^ M[4 * (0 + offset) + 1]));
            y[2] = (unsigned char)(sbox(1, sbox(1, sbox(0, (ulong32)y[2]) ^ M[4 * (2 + offset) + 2]) ^ M[4 * (0 + offset) + 2]));
            y[3] = (unsigned char)(sbox(0, sbox(1, sbox(1, (ulong32)y[3]) ^ M[4 * (2 + offset) + 3]) ^ M[4 * (0 + offset) + 3]));
  }
  mds_mult(y, out);
}

#ifndef TWOFISH_SMALL

/* for GCC we don't use pointer aliases */
#if defined(__GNUC__)
    #define S1 skey->twofish.S[0]
    #define S2 skey->twofish.S[1]
    #define S3 skey->twofish.S[2]
    #define S4 skey->twofish.S[3]
#endif

/* the G function */
#define g_func(x, dum)  (S1[byte(x,0)] ^ S2[byte(x,1)] ^ S3[byte(x,2)] ^ S4[byte(x,3)])
#define g1_func(x, dum) (S2[byte(x,0)] ^ S3[byte(x,1)] ^ S4[byte(x,2)] ^ S1[byte(x,3)])

#else

#ifdef LTC_CLEAN_STACK
static ulong32 _g_func(ulong32 x, symmetric_key *key)
#else
static ulong32 g_func(ulong32 x, symmetric_key *key)
#endif
{
   unsigned char g, i, y, z;
   ulong32 res;

   res = 0;
   for (y = 0; y < 4; y++) {
       z = key->twofish.start;

       /* do unkeyed substitution */
       g = sbox(qord[y][z++], (x >> (8*y)) & 255);

       /* first subkey */
       i = 0;

       /* do key mixing+sbox until z==5 */
       while (z != 5) {
          g = g ^ key->twofish.S[4*i++ + y];
          g = sbox(qord[y][z++], g);
       }

       /* multiply g by a column of the MDS */
       res ^= mds_column_mult(g, y);
   }
   return res;
}

#define g1_func(x, key) g_func(ROLc(x, 8), key)

#ifdef LTC_CLEAN_STACK
static ulong32 g_func(ulong32 x, symmetric_key *key)
{
    ulong32 y;
    y = _g_func(x, key);
    burn_stack(sizeof(unsigned char) * 4 + sizeof(ulong32));
    return y;
}
#endif /* LTC_CLEAN_STACK */

#endif /* TWOFISH_SMALL */

 /**
    Initialize the Twofish block cipher
    @param key The symmetric key you wish to pass
    @param keylen The key length in bytes
    @param num_rounds The number of rounds desired (0 for default)
    @param skey The key in as scheduled by this function.
    @return CRYPT_OK if successful
 */
#ifdef LTC_CLEAN_STACK
static int _twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
#else
int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
#endif
{
#ifndef TWOFISH_SMALL
   unsigned char S[4*4], tmpx0, tmpx1;
#endif
   int k, x, y;
   unsigned char tmp[4], tmp2[4], M[8*4];
   ulong32 A, B;

   LTC_ARGCHK(key  != NULL);
   LTC_ARGCHK(skey != NULL);

   /* invalid arguments? */
   if (num_rounds != 16 && num_rounds != 0) {
      return CRYPT_INVALID_ROUNDS;
   }

   if (keylen != 16 && keylen != 24 && keylen != 32) {
      return CRYPT_INVALID_KEYSIZE;
   }

   /* k = keysize/64 [but since our keysize is in bytes...] */
   k = keylen / 8;

   /* copy the key into M */
   for (x = 0; x < keylen; x++) {
       M[x] = key[x] & 255;
   }

   /* create the S[..] words */
#ifndef TWOFISH_SMALL
   for (x = 0; x < k; x++) {
       rs_mult(M+(x*8), S+(x*4));
   }
#else
   for (x = 0; x < k; x++) {
       rs_mult(M+(x*8), skey->twofish.S+(x*4));
   }
#endif

   /* make subkeys */
   for (x = 0; x < 20; x++) {
       /* A = h(p * 2x, Me) */
       for (y = 0; y < 4; y++) {
           tmp[y] = x+x;
       }
       h_func(tmp, tmp2, M, k, 0);
       LOAD32L(A, tmp2);

       /* B = ROL(h(p * (2x + 1), Mo), 8) */
       for (y = 0; y < 4; y++) {
           tmp[y] = (unsigned char)(x+x+1);
       }
       h_func(tmp, tmp2, M, k, 1);
       LOAD32L(B, tmp2);
       B = ROLc(B, 8);

       /* K[2i]   = A + B */
       skey->twofish.K[x+x] = (A + B) & 0xFFFFFFFFUL;

       /* K[2i+1] = (A + 2B) <<< 9 */
       skey->twofish.K[x+x+1] = ROLc(B + B + A, 9);
   }

#ifndef TWOFISH_SMALL
   /* make the sboxes (large ram variant) */
   if (k == 2) {
        for (x = 0; x < 256; x++) {
           tmpx0 = (unsigned char)sbox(0, x);
           tmpx1 = (unsigned char)sbox(1, x);
           skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, tmpx0 ^ S[0]) ^ S[4])),0);
           skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, tmpx1 ^ S[1]) ^ S[5])),1);
           skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, tmpx0 ^ S[2]) ^ S[6])),2);
           skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, tmpx1 ^ S[3]) ^ S[7])),3);
        }
   } else if (k == 3) {
        for (x = 0; x < 256; x++) {
           tmpx0 = (unsigned char)sbox(0, x);
           tmpx1 = (unsigned char)sbox(1, x);
           skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, sbox(0, tmpx1 ^ S[0]) ^ S[4]) ^ S[8])),0);
           skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, sbox(1, tmpx1 ^ S[1]) ^ S[5]) ^ S[9])),1);
           skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, sbox(0, tmpx0 ^ S[2]) ^ S[6]) ^ S[10])),2);
           skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, sbox(1, tmpx0 ^ S[3]) ^ S[7]) ^ S[11])),3);
        }
   } else {
        for (x = 0; x < 256; x++) {
           tmpx0 = (unsigned char)sbox(0, x);
           tmpx1 = (unsigned char)sbox(1, x);
           skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, sbox(0, sbox(1, tmpx1 ^ S[0]) ^ S[4]) ^ S[8]) ^ S[12])),0);
           skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, sbox(1, sbox(1, tmpx0 ^ S[1]) ^ S[5]) ^ S[9]) ^ S[13])),1);
           skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, sbox(0, sbox(0, tmpx0 ^ S[2]) ^ S[6]) ^ S[10]) ^ S[14])),2);
           skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, sbox(1, sbox(0, tmpx1 ^ S[3]) ^ S[7]) ^ S[11]) ^ S[15])),3);
        }
   }
#else
   /* where to start in the sbox layers */
   /* small ram variant */
   switch (k) {
         case 4 : skey->twofish.start = 0; break;
         case 3 : skey->twofish.start = 1; break; 
         default: skey->twofish.start = 2; break;
   }
#endif
   return CRYPT_OK;
}

#ifdef LTC_CLEAN_STACK
int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
   int x;
   x = _twofish_setup(key, keylen, num_rounds, skey);
   burn_stack(sizeof(int) * 7 + sizeof(unsigned char) * 56 + sizeof(ulong32) * 2);
   return x;
}
#endif

/**
  Encrypts a block of text with Twofish
  @param pt The input plaintext (16 bytes)
  @param ct The output ciphertext (16 bytes)
  @param skey The key as scheduled
  @return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int _twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
#else
int twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
#endif
{
    ulong32 a,b,c,d,ta,tb,tc,td,t1,t2, *k;
    int r;
#if !defined(TWOFISH_SMALL) && !defined(__GNUC__)
    ulong32 *S1, *S2, *S3, *S4;
#endif    

    LTC_ARGCHK(pt   != NULL);
    LTC_ARGCHK(ct   != NULL);
    LTC_ARGCHK(skey != NULL);
    
#if !defined(TWOFISH_SMALL) && !defined(__GNUC__)
    S1 = skey->twofish.S[0];
    S2 = skey->twofish.S[1];
    S3 = skey->twofish.S[2];
    S4 = skey->twofish.S[3];
#endif    

    LOAD32L(a,&pt[0]); LOAD32L(b,&pt[4]);
    LOAD32L(c,&pt[8]); LOAD32L(d,&pt[12]);
    a ^= skey->twofish.K[0];
    b ^= skey->twofish.K[1];
    c ^= skey->twofish.K[2];
    d ^= skey->twofish.K[3];
    
    k  = skey->twofish.K + 8;
    for (r = 8; r != 0; --r) {
        t2 = g1_func(b, skey);
        t1 = g_func(a, skey) + t2;
        c  = RORc(c ^ (t1 + k[0]), 1);
        d  = ROLc(d, 1) ^ (t2 + t1 + k[1]);
        
        t2 = g1_func(d, skey);
        t1 = g_func(c, skey) + t2;
        a  = RORc(a ^ (t1 + k[2]), 1);
        b  = ROLc(b, 1) ^ (t2 + t1 + k[3]);
        k += 4;
   }

    /* output with "undo last swap" */
    ta = c ^ skey->twofish.K[4];
    tb = d ^ skey->twofish.K[5];
    tc = a ^ skey->twofish.K[6];
    td = b ^ skey->twofish.K[7];

    /* store output */
    STORE32L(ta,&ct[0]); STORE32L(tb,&ct[4]);
    STORE32L(tc,&ct[8]); STORE32L(td,&ct[12]);

    return CRYPT_OK;
}

#ifdef LTC_CLEAN_STACK
int twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
{
   int err = _twofish_ecb_encrypt(pt, ct, skey);
   burn_stack(sizeof(ulong32) * 10 + sizeof(int));
   return err;
}
#endif

/**
  Decrypts a block of text with Twofish
  @param ct The input ciphertext (16 bytes)
  @param pt The output plaintext (16 bytes)
  @param skey The key as scheduled 
  @return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int _twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
#else
int twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
#endif
{
    ulong32 a,b,c,d,ta,tb,tc,td,t1,t2, *k;
    int r;
#if !defined(TWOFISH_SMALL) && !defined(__GNUC__)
    ulong32 *S1, *S2, *S3, *S4;
#endif    

    LTC_ARGCHK(pt   != NULL);
    LTC_ARGCHK(ct   != NULL);
    LTC_ARGCHK(skey != NULL);
    
#if !defined(TWOFISH_SMALL) && !defined(__GNUC__)
    S1 = skey->twofish.S[0];
    S2 = skey->twofish.S[1];
    S3 = skey->twofish.S[2];
    S4 = skey->twofish.S[3];
#endif    

    /* load input */
    LOAD32L(ta,&ct[0]); LOAD32L(tb,&ct[4]);
    LOAD32L(tc,&ct[8]); LOAD32L(td,&ct[12]);

    /* undo undo final swap */
    a = tc ^ skey->twofish.K[6];
    b = td ^ skey->twofish.K[7];
    c = ta ^ skey->twofish.K[4];
    d = tb ^ skey->twofish.K[5];

    k = skey->twofish.K + 36;
    for (r = 8; r != 0; --r) {
        t2 = g1_func(d, skey);
        t1 = g_func(c, skey) + t2;
        a = ROLc(a, 1) ^ (t1 + k[2]);
        b = RORc(b ^ (t2 + t1 + k[3]), 1);

        t2 = g1_func(b, skey);
        t1 = g_func(a, skey) + t2;
        c = ROLc(c, 1) ^ (t1 + k[0]);
        d = RORc(d ^ (t2 +  t1 + k[1]), 1);
        k -= 4;
    }

    /* pre-white */
    a ^= skey->twofish.K[0];
    b ^= skey->twofish.K[1];
    c ^= skey->twofish.K[2];
    d ^= skey->twofish.K[3];
    
    /* store */
    STORE32L(a, &pt[0]); STORE32L(b, &pt[4]);
    STORE32L(c, &pt[8]); STORE32L(d, &pt[12]);
    return CRYPT_OK;
}

#ifdef LTC_CLEAN_STACK
int twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
{
   int err =_twofish_ecb_decrypt(ct, pt, skey);
   burn_stack(sizeof(ulong32) * 10 + sizeof(int));
   return err;
}
#endif

/**
  Performs a self-test of the Twofish block cipher
  @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int twofish_test(void)
{
 #ifndef LTC_TEST
    return CRYPT_NOP;
 #else    
 static const struct { 
     int keylen;
     unsigned char key[32], pt[16], ct[16];
 } tests[] = {
   { 16,
     { 0x9F, 0x58, 0x9F, 0x5C, 0xF6, 0x12, 0x2C, 0x32,
       0xB6, 0xBF, 0xEC, 0x2F, 0x2A, 0xE8, 0xC3, 0x5A },
     { 0xD4, 0x91, 0xDB, 0x16, 0xE7, 0xB1, 0xC3, 0x9E,
       0x86, 0xCB, 0x08, 0x6B, 0x78, 0x9F, 0x54, 0x19 },
     { 0x01, 0x9F, 0x98, 0x09, 0xDE, 0x17, 0x11, 0x85,
       0x8F, 0xAA, 0xC3, 0xA3, 0xBA, 0x20, 0xFB, 0xC3 }
   }, {
     24,
     { 0x88, 0xB2, 0xB2, 0x70, 0x6B, 0x10, 0x5E, 0x36,
       0xB4, 0x46, 0xBB, 0x6D, 0x73, 0x1A, 0x1E, 0x88,
       0xEF, 0xA7, 0x1F, 0x78, 0x89, 0x65, 0xBD, 0x44 },
     { 0x39, 0xDA, 0x69, 0xD6, 0xBA, 0x49, 0x97, 0xD5,
       0x85, 0xB6, 0xDC, 0x07, 0x3C, 0xA3, 0x41, 0xB2 },
     { 0x18, 0x2B, 0x02, 0xD8, 0x14, 0x97, 0xEA, 0x45,
       0xF9, 0xDA, 0xAC, 0xDC, 0x29, 0x19, 0x3A, 0x65 }
   }, { 
     32,
     { 0xD4, 0x3B, 0xB7, 0x55, 0x6E, 0xA3, 0x2E, 0x46,
       0xF2, 0xA2, 0x82, 0xB7, 0xD4, 0x5B, 0x4E, 0x0D,
       0x57, 0xFF, 0x73, 0x9D, 0x4D, 0xC9, 0x2C, 0x1B,
       0xD7, 0xFC, 0x01, 0x70, 0x0C, 0xC8, 0x21, 0x6F },
     { 0x90, 0xAF, 0xE9, 0x1B, 0xB2, 0x88, 0x54, 0x4F,
       0x2C, 0x32, 0xDC, 0x23, 0x9B, 0x26, 0x35, 0xE6 },
     { 0x6C, 0xB4, 0x56, 0x1C, 0x40, 0xBF, 0x0A, 0x97,
       0x05, 0x93, 0x1C, 0xB6, 0xD4, 0x08, 0xE7, 0xFA }
   }
};


 symmetric_key key;
 unsigned char tmp[2][16];
 int err, i, y;
 
 for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
    if ((err = twofish_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
       return err;
    }
    twofish_ecb_encrypt(tests[i].pt, tmp[0], &key);
    twofish_ecb_decrypt(tmp[0], tmp[1], &key);
    if (XMEMCMP(tmp[0], tests[i].ct, 16) != 0 || XMEMCMP(tmp[1], tests[i].pt, 16) != 0) {
#if 0
       printf("Twofish failed test %d, %d, %d\n", i, XMEMCMP(tmp[0], tests[i].ct, 16), XMEMCMP(tmp[1], tests[i].pt, 16));
#endif
       return CRYPT_FAIL_TESTVECTOR;
    }
      /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
      for (y = 0; y < 16; y++) tmp[0][y] = 0;
      for (y = 0; y < 1000; y++) twofish_ecb_encrypt(tmp[0], tmp[0], &key);
      for (y = 0; y < 1000; y++) twofish_ecb_decrypt(tmp[0], tmp[0], &key);
      for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
 }    
 return CRYPT_OK;
#endif 
}

/** Terminate the context 
   @param skey    The scheduled key
*/
void twofish_done(symmetric_key *skey)
{
   (void)skey;
}

/**
  Gets suitable key size
  @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
  @return CRYPT_OK if the input key size is acceptable.
*/
int twofish_keysize(int *keysize)
{
   LTC_ARGCHK(keysize);
   if (*keysize < 16)
      return CRYPT_INVALID_KEYSIZE;
   if (*keysize < 24) {
      *keysize = 16;
      return CRYPT_OK;
   } else if (*keysize < 32) {
      *keysize = 24;
      return CRYPT_OK;
   } else {
      *keysize = 32;
      return CRYPT_OK;
   }
}

#endif




/* $Source: /cvs/libtom/libtomcrypt/src/ciphers/twofish/twofish.c,v $ */
/* $Revision: 1.14 $ */
/* $Date: 2006/12/04 21:34:03 $ */