1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
/**
@file skipjack.c
Skipjack Implementation by Tom St Denis
*/
#include "tomcrypt.h"
#ifdef LTC_SKIPJACK
const struct ltc_cipher_descriptor skipjack_desc =
{
"skipjack",
17,
10, 10, 8, 32,
&skipjack_setup,
&skipjack_ecb_encrypt,
&skipjack_ecb_decrypt,
&skipjack_test,
&skipjack_done,
&skipjack_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
static const unsigned char sbox[256] = {
0xa3,0xd7,0x09,0x83,0xf8,0x48,0xf6,0xf4,0xb3,0x21,0x15,0x78,0x99,0xb1,0xaf,0xf9,
0xe7,0x2d,0x4d,0x8a,0xce,0x4c,0xca,0x2e,0x52,0x95,0xd9,0x1e,0x4e,0x38,0x44,0x28,
0x0a,0xdf,0x02,0xa0,0x17,0xf1,0x60,0x68,0x12,0xb7,0x7a,0xc3,0xe9,0xfa,0x3d,0x53,
0x96,0x84,0x6b,0xba,0xf2,0x63,0x9a,0x19,0x7c,0xae,0xe5,0xf5,0xf7,0x16,0x6a,0xa2,
0x39,0xb6,0x7b,0x0f,0xc1,0x93,0x81,0x1b,0xee,0xb4,0x1a,0xea,0xd0,0x91,0x2f,0xb8,
0x55,0xb9,0xda,0x85,0x3f,0x41,0xbf,0xe0,0x5a,0x58,0x80,0x5f,0x66,0x0b,0xd8,0x90,
0x35,0xd5,0xc0,0xa7,0x33,0x06,0x65,0x69,0x45,0x00,0x94,0x56,0x6d,0x98,0x9b,0x76,
0x97,0xfc,0xb2,0xc2,0xb0,0xfe,0xdb,0x20,0xe1,0xeb,0xd6,0xe4,0xdd,0x47,0x4a,0x1d,
0x42,0xed,0x9e,0x6e,0x49,0x3c,0xcd,0x43,0x27,0xd2,0x07,0xd4,0xde,0xc7,0x67,0x18,
0x89,0xcb,0x30,0x1f,0x8d,0xc6,0x8f,0xaa,0xc8,0x74,0xdc,0xc9,0x5d,0x5c,0x31,0xa4,
0x70,0x88,0x61,0x2c,0x9f,0x0d,0x2b,0x87,0x50,0x82,0x54,0x64,0x26,0x7d,0x03,0x40,
0x34,0x4b,0x1c,0x73,0xd1,0xc4,0xfd,0x3b,0xcc,0xfb,0x7f,0xab,0xe6,0x3e,0x5b,0xa5,
0xad,0x04,0x23,0x9c,0x14,0x51,0x22,0xf0,0x29,0x79,0x71,0x7e,0xff,0x8c,0x0e,0xe2,
0x0c,0xef,0xbc,0x72,0x75,0x6f,0x37,0xa1,0xec,0xd3,0x8e,0x62,0x8b,0x86,0x10,0xe8,
0x08,0x77,0x11,0xbe,0x92,0x4f,0x24,0xc5,0x32,0x36,0x9d,0xcf,0xf3,0xa6,0xbb,0xac,
0x5e,0x6c,0xa9,0x13,0x57,0x25,0xb5,0xe3,0xbd,0xa8,0x3a,0x01,0x05,0x59,0x2a,0x46
};
/* simple x + 1 (mod 10) in one step. */
static const int keystep[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
/* simple x - 1 (mod 10) in one step */
static const int ikeystep[] = { 9, 0, 1, 2, 3, 4, 5, 6, 7, 8 };
/**
Initialize the Skipjack block cipher
@param key The symmetric key you wish to pass
@param keylen The key length in bytes
@param num_rounds The number of rounds desired (0 for default)
@param skey The key in as scheduled by this function.
@return CRYPT_OK if successful
*/
int skipjack_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
int x;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
if (keylen != 10) {
return CRYPT_INVALID_KEYSIZE;
}
if (num_rounds != 32 && num_rounds != 0) {
return CRYPT_INVALID_ROUNDS;
}
/* make sure the key is in range for platforms where CHAR_BIT != 8 */
for (x = 0; x < 10; x++) {
skey->skipjack.key[x] = key[x] & 255;
}
return CRYPT_OK;
}
#define RULE_A \
tmp = g_func(w1, &kp, skey->skipjack.key); \
w1 = tmp ^ w4 ^ x; \
w4 = w3; w3 = w2; \
w2 = tmp;
#define RULE_B \
tmp = g_func(w1, &kp, skey->skipjack.key); \
tmp1 = w4; w4 = w3; \
w3 = w1 ^ w2 ^ x; \
w1 = tmp1; w2 = tmp;
#define RULE_A1 \
tmp = w1 ^ w2 ^ x; \
w1 = ig_func(w2, &kp, skey->skipjack.key); \
w2 = w3; w3 = w4; w4 = tmp;
#define RULE_B1 \
tmp = ig_func(w2, &kp, skey->skipjack.key); \
w2 = tmp ^ w3 ^ x; \
w3 = w4; w4 = w1; w1 = tmp;
static unsigned g_func(unsigned w, int *kp, unsigned char *key)
{
unsigned char g1,g2;
g1 = (w >> 8) & 255; g2 = w & 255;
g1 ^= sbox[g2^key[*kp]]; *kp = keystep[*kp];
g2 ^= sbox[g1^key[*kp]]; *kp = keystep[*kp];
g1 ^= sbox[g2^key[*kp]]; *kp = keystep[*kp];
g2 ^= sbox[g1^key[*kp]]; *kp = keystep[*kp];
return ((unsigned)g1<<8)|(unsigned)g2;
}
static unsigned ig_func(unsigned w, int *kp, unsigned char *key)
{
unsigned char g1,g2;
g1 = (w >> 8) & 255; g2 = w & 255;
*kp = ikeystep[*kp]; g2 ^= sbox[g1^key[*kp]];
*kp = ikeystep[*kp]; g1 ^= sbox[g2^key[*kp]];
*kp = ikeystep[*kp]; g2 ^= sbox[g1^key[*kp]];
*kp = ikeystep[*kp]; g1 ^= sbox[g2^key[*kp]];
return ((unsigned)g1<<8)|(unsigned)g2;
}
/**
Encrypts a block of text with Skipjack
@param pt The input plaintext (8 bytes)
@param ct The output ciphertext (8 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int _skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
#else
int skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
#endif
{
unsigned w1,w2,w3,w4,tmp,tmp1;
int x, kp;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
/* load block */
w1 = ((unsigned)pt[0]<<8)|pt[1];
w2 = ((unsigned)pt[2]<<8)|pt[3];
w3 = ((unsigned)pt[4]<<8)|pt[5];
w4 = ((unsigned)pt[6]<<8)|pt[7];
/* 8 rounds of RULE A */
for (x = 1, kp = 0; x < 9; x++) {
RULE_A;
}
/* 8 rounds of RULE B */
for (; x < 17; x++) {
RULE_B;
}
/* 8 rounds of RULE A */
for (; x < 25; x++) {
RULE_A;
}
/* 8 rounds of RULE B */
for (; x < 33; x++) {
RULE_B;
}
/* store block */
ct[0] = (w1>>8)&255; ct[1] = w1&255;
ct[2] = (w2>>8)&255; ct[3] = w2&255;
ct[4] = (w3>>8)&255; ct[5] = w3&255;
ct[6] = (w4>>8)&255; ct[7] = w4&255;
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
{
int err = _skipjack_ecb_encrypt(pt, ct, skey);
burn_stack(sizeof(unsigned) * 8 + sizeof(int) * 2);
return err;
}
#endif
/**
Decrypts a block of text with Skipjack
@param ct The input ciphertext (8 bytes)
@param pt The output plaintext (8 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int _skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
#else
int skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
#endif
{
unsigned w1,w2,w3,w4,tmp;
int x, kp;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
/* load block */
w1 = ((unsigned)ct[0]<<8)|ct[1];
w2 = ((unsigned)ct[2]<<8)|ct[3];
w3 = ((unsigned)ct[4]<<8)|ct[5];
w4 = ((unsigned)ct[6]<<8)|ct[7];
/* 8 rounds of RULE B^-1
Note the value "kp = 8" comes from "kp = (32 * 4) mod 10" where 32*4 is 128 which mod 10 is 8
*/
for (x = 32, kp = 8; x > 24; x--) {
RULE_B1;
}
/* 8 rounds of RULE A^-1 */
for (; x > 16; x--) {
RULE_A1;
}
/* 8 rounds of RULE B^-1 */
for (; x > 8; x--) {
RULE_B1;
}
/* 8 rounds of RULE A^-1 */
for (; x > 0; x--) {
RULE_A1;
}
/* store block */
pt[0] = (w1>>8)&255; pt[1] = w1&255;
pt[2] = (w2>>8)&255; pt[3] = w2&255;
pt[4] = (w3>>8)&255; pt[5] = w3&255;
pt[6] = (w4>>8)&255; pt[7] = w4&255;
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
{
int err = _skipjack_ecb_decrypt(ct, pt, skey);
burn_stack(sizeof(unsigned) * 7 + sizeof(int) * 2);
return err;
}
#endif
/**
Performs a self-test of the Skipjack block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int skipjack_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
unsigned char key[10], pt[8], ct[8];
} tests[] = {
{
{ 0x00, 0x99, 0x88, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11 },
{ 0x33, 0x22, 0x11, 0x00, 0xdd, 0xcc, 0xbb, 0xaa },
{ 0x25, 0x87, 0xca, 0xe2, 0x7a, 0x12, 0xd3, 0x00 }
}
};
unsigned char buf[2][8];
int x, y, err;
symmetric_key key;
for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
/* setup key */
if ((err = skipjack_setup(tests[x].key, 10, 0, &key)) != CRYPT_OK) {
return err;
}
/* encrypt and decrypt */
skipjack_ecb_encrypt(tests[x].pt, buf[0], &key);
skipjack_ecb_decrypt(buf[0], buf[1], &key);
/* compare */
if (XMEMCMP(buf[0], tests[x].ct, 8) != 0 || XMEMCMP(buf[1], tests[x].pt, 8) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 8; y++) buf[0][y] = 0;
for (y = 0; y < 1000; y++) skipjack_ecb_encrypt(buf[0], buf[0], &key);
for (y = 0; y < 1000; y++) skipjack_ecb_decrypt(buf[0], buf[0], &key);
for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
}
return CRYPT_OK;
#endif
}
/** Terminate the context
@param skey The scheduled key
*/
void skipjack_done(symmetric_key *skey)
{
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int skipjack_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize < 10) {
return CRYPT_INVALID_KEYSIZE;
} else if (*keysize > 10) {
*keysize = 10;
}
return CRYPT_OK;
}
#endif
/* $Source$ */
/* $Revision$ */
/* $Date$ */
|