1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
|
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
/**
@file multi2.c
Multi-2 implementation (not public domain, hence the default disable)
*/
#include "tomcrypt.h"
#ifdef LTC_MULTI2
static void pi1(ulong32 *p)
{
p[1] ^= p[0];
}
static void pi2(ulong32 *p, ulong32 *k)
{
ulong32 t;
t = (p[1] + k[0]) & 0xFFFFFFFFUL;
t = (ROL(t, 1) + t - 1) & 0xFFFFFFFFUL;
t = (ROL(t, 4) ^ t) & 0xFFFFFFFFUL;
p[0] ^= t;
}
static void pi3(ulong32 *p, ulong32 *k)
{
ulong32 t;
t = p[0] + k[1];
t = (ROL(t, 2) + t + 1) & 0xFFFFFFFFUL;
t = (ROL(t, 8) ^ t) & 0xFFFFFFFFUL;
t = (t + k[2]) & 0xFFFFFFFFUL;
t = (ROL(t, 1) - t) & 0xFFFFFFFFUL;
t = ROL(t, 16) ^ (p[0] | t);
p[1] ^= t;
}
static void pi4(ulong32 *p, ulong32 *k)
{
ulong32 t;
t = (p[1] + k[3]) & 0xFFFFFFFFUL;
t = (ROL(t, 2) + t + 1) & 0xFFFFFFFFUL;
p[0] ^= t;
}
static void setup(ulong32 *dk, ulong32 *k, ulong32 *uk)
{
int n, t;
ulong32 p[2];
p[0] = dk[0]; p[1] = dk[1];
t = 4;
n = 0;
pi1(p);
pi2(p, k);
uk[n++] = p[0];
pi3(p, k);
uk[n++] = p[1];
pi4(p, k);
uk[n++] = p[0];
pi1(p);
uk[n++] = p[1];
pi2(p, k+t);
uk[n++] = p[0];
pi3(p, k+t);
uk[n++] = p[1];
pi4(p, k+t);
uk[n++] = p[0];
pi1(p);
uk[n++] = p[1];
}
static void encrypt(ulong32 *p, int N, ulong32 *uk)
{
int n, t;
for (t = n = 0; ; ) {
pi1(p); if (++n == N) break;
pi2(p, uk+t); if (++n == N) break;
pi3(p, uk+t); if (++n == N) break;
pi4(p, uk+t); if (++n == N) break;
t ^= 4;
}
}
static void decrypt(ulong32 *p, int N, ulong32 *uk)
{
int n, t;
for (t = 4*((N&1)^1), n = N; ; ) {
switch (n >= 4 ? 4 : 0) {
case 4: pi4(p, uk+t); --n;
case 3: pi3(p, uk+t); --n;
case 2: pi2(p, uk+t); --n;
case 1: pi1(p); --n; break;
case 0: return;
}
t ^= 4;
}
}
const struct ltc_cipher_descriptor multi2_desc = {
"multi2",
22,
40, 40, 8, 128,
&multi2_setup,
&multi2_ecb_encrypt,
&multi2_ecb_decrypt,
&multi2_test,
&multi2_done,
&multi2_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
int multi2_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
ulong32 sk[8], dk[2];
int x;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
if (keylen != 40) return CRYPT_INVALID_KEYSIZE;
if (num_rounds == 0) num_rounds = 128;
skey->multi2.N = num_rounds;
for (x = 0; x < 8; x++) {
LOAD32H(sk[x], key + x*4);
}
LOAD32H(dk[0], key + 32);
LOAD32H(dk[1], key + 36);
setup(dk, sk, skey->multi2.uk);
zeromem(sk, sizeof(sk));
zeromem(dk, sizeof(dk));
return CRYPT_OK;
}
/**
Encrypts a block of text with multi2
@param pt The input plaintext (8 bytes)
@param ct The output ciphertext (8 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
int multi2_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
{
ulong32 p[2];
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
LOAD32H(p[0], pt);
LOAD32H(p[1], pt+4);
encrypt(p, skey->multi2.N, skey->multi2.uk);
STORE32H(p[0], ct);
STORE32H(p[1], ct+4);
return CRYPT_OK;
}
/**
Decrypts a block of text with multi2
@param ct The input ciphertext (8 bytes)
@param pt The output plaintext (8 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
int multi2_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
{
ulong32 p[2];
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
LOAD32H(p[0], ct);
LOAD32H(p[1], ct+4);
decrypt(p, skey->multi2.N, skey->multi2.uk);
STORE32H(p[0], pt);
STORE32H(p[1], pt+4);
return CRYPT_OK;
}
/**
Performs a self-test of the multi2 block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int multi2_test(void)
{
static const struct {
unsigned char key[40];
unsigned char pt[8], ct[8];
int rounds;
} tests[] = {
{
{
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x01, 0x23, 0x45, 0x67,
0x89, 0xAB, 0xCD, 0xEF
},
{
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x01,
},
{
0xf8, 0x94, 0x40, 0x84,
0x5e, 0x11, 0xcf, 0x89
},
128,
},
{
{
0x35, 0x91, 0x9d, 0x96,
0x07, 0x02, 0xe2, 0xce,
0x8d, 0x0b, 0x58, 0x3c,
0xc9, 0xc8, 0x9d, 0x59,
0xa2, 0xae, 0x96, 0x4e,
0x87, 0x82, 0x45, 0xed,
0x3f, 0x2e, 0x62, 0xd6,
0x36, 0x35, 0xd0, 0x67,
0xb1, 0x27, 0xb9, 0x06,
0xe7, 0x56, 0x22, 0x38,
},
{
0x1f, 0xb4, 0x60, 0x60,
0xd0, 0xb3, 0x4f, 0xa5
},
{
0xca, 0x84, 0xa9, 0x34,
0x75, 0xc8, 0x60, 0xe5
},
216,
}
};
unsigned char buf[8];
symmetric_key skey;
int err, x;
for (x = 1; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) {
if ((err = multi2_setup(tests[x].key, 40, tests[x].rounds, &skey)) != CRYPT_OK) {
return err;
}
if ((err = multi2_ecb_encrypt(tests[x].pt, buf, &skey)) != CRYPT_OK) {
return err;
}
if (XMEMCMP(buf, tests[x].ct, 8)) {
return CRYPT_FAIL_TESTVECTOR;
}
if ((err = multi2_ecb_decrypt(buf, buf, &skey)) != CRYPT_OK) {
return err;
}
if (XMEMCMP(buf, tests[x].pt, 8)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
}
/** Terminate the context
@param skey The scheduled key
*/
void multi2_done(symmetric_key *skey)
{
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int multi2_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize >= 40) {
*keysize = 40;
} else {
return CRYPT_INVALID_KEYSIZE;
}
return CRYPT_OK;
}
#endif
/* $Source$ */
/* $Revision$ */
/* $Date$ */
|