#define FUZZ_SKIP_WRAP 1 #include "includes.h" #include "fuzz-wrapfd.h" #include "fuzz.h" static const int IOWRAP_MAXFD = FD_SETSIZE-1; static const int MAX_RANDOM_IN = 50000; static const double CHANCE_CLOSE = 1.0 / 300; static const double CHANCE_INTR = 1.0 / 200; static const double CHANCE_READ1 = 0.6; static const double CHANCE_READ2 = 0.3; static const double CHANCE_WRITE1 = 0.8; static const double CHANCE_WRITE2 = 0.3; struct fdwrap { enum wrapfd_mode mode; buffer *buf; int closein; int closeout; }; static struct fdwrap wrap_fds[IOWRAP_MAXFD+1]; // for quick selection of in-use descriptors static int wrap_used[IOWRAP_MAXFD+1]; static unsigned int nused; static unsigned short rand_state[3]; void wrapfd_setup(uint32_t seed) { TRACE(("wrapfd_setup %x", seed)) nused = 0; memset(wrap_fds, 0x0, sizeof(wrap_fds)); memset(wrap_used, 0x0, sizeof(wrap_used)); memset(rand_state, 0x0, sizeof(rand_state)); *((uint32_t*)rand_state) = seed; nrand48(rand_state); } void wrapfd_add(int fd, buffer *buf, enum wrapfd_mode mode) { TRACE(("wrapfd_add %d buf %p mode %d", fd, buf, mode)) assert(fd >= 0); assert(fd <= IOWRAP_MAXFD); assert(wrap_fds[fd].mode == UNUSED); assert(buf || mode == RANDOMIN); wrap_fds[fd].mode = mode; wrap_fds[fd].buf = buf; wrap_fds[fd].closein = 0; wrap_fds[fd].closeout = 0; wrap_used[nused] = fd; nused++; } void wrapfd_remove(int fd) { unsigned int i, j; TRACE(("wrapfd_remove %d", fd)) assert(fd >= 0); assert(fd <= IOWRAP_MAXFD); assert(wrap_fds[fd].mode != UNUSED); wrap_fds[fd].mode = UNUSED; // remove from used list for (i = 0, j = 0; i < nused; i++) { if (wrap_used[i] != fd) { wrap_used[j] = wrap_used[i]; j++; } } nused--; } void wrapfd_close(int fd) { wrapfd_remove(fd); } int wrapfd_read(int fd, void *out, size_t count) { size_t maxread; buffer *buf; if (!fuzz.wrapfds) { return read(fd, out, count); } if (fd < 0 || fd > IOWRAP_MAXFD || wrap_fds[fd].mode == UNUSED) { // XXX - assertion failure? TRACE(("Bad read descriptor %d\n", fd)) errno = EBADF; return -1; } assert(count != 0); if (wrap_fds[fd].closein || erand48(rand_state) < CHANCE_CLOSE) { wrap_fds[fd].closein = 1; errno = ECONNRESET; return -1; } if (erand48(rand_state) < CHANCE_INTR) { errno = EINTR; return -1; } buf = wrap_fds[fd].buf; if (buf) { maxread = MIN(buf->len - buf->pos, count); // returns 0 if buf is EOF, as intended if (maxread > 0) { maxread = nrand48(rand_state) % maxread + 1; } memcpy(out, buf_getptr(buf, maxread), maxread); buf_incrpos(buf, maxread); return maxread; } maxread = MIN(MAX_RANDOM_IN, count); maxread = nrand48(rand_state) % maxread + 1; memset(out, 0xef, maxread); return maxread; } int wrapfd_write(int fd, const void* in, size_t count) { unsigned const volatile char* volin = in; unsigned int i; if (!fuzz.wrapfds) { return write(fd, in, count); } if (fd < 0 || fd > IOWRAP_MAXFD || wrap_fds[fd].mode == UNUSED) { // XXX - assertion failure? TRACE(("Bad read descriptor %d\n", fd)) errno = EBADF; return -1; } assert(count != 0); // force read to exercise sanitisers for (i = 0; i < count; i++) { (void)volin[i]; } if (wrap_fds[fd].closeout || erand48(rand_state) < CHANCE_CLOSE) { wrap_fds[fd].closeout = 1; errno = ECONNRESET; return -1; } if (erand48(rand_state) < CHANCE_INTR) { errno = EINTR; return -1; } return nrand48(rand_state) % (count+1); } int wrapfd_select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout) { int i, nset, sel; int ret = 0; int fdlist[IOWRAP_MAXFD+1] = {0}; if (!fuzz.wrapfds) { return select(nfds, readfds, writefds, exceptfds, timeout); } assert(nfds <= IOWRAP_MAXFD+1); if (erand48(rand_state) < CHANCE_INTR) { errno = EINTR; return -1; } // read if (readfds != NULL && erand48(rand_state) < CHANCE_READ1) { for (i = 0, nset = 0; i < nfds; i++) { if (FD_ISSET(i, readfds)) { assert(wrap_fds[i].mode != UNUSED); fdlist[nset] = i; nset++; } } FD_ZERO(readfds); if (nset > 0) { // set one sel = fdlist[nrand48(rand_state) % nset]; FD_SET(sel, readfds); ret++; if (erand48(rand_state) < CHANCE_READ2) { sel = fdlist[nrand48(rand_state) % nset]; if (!FD_ISSET(sel, readfds)) { FD_SET(sel, readfds); ret++; } } } } // write if (writefds != NULL && erand48(rand_state) < CHANCE_WRITE1) { for (i = 0, nset = 0; i < nfds; i++) { if (FD_ISSET(i, writefds)) { assert(wrap_fds[i].mode != UNUSED); fdlist[nset] = i; nset++; } } FD_ZERO(writefds); // set one if (nset > 0) { sel = fdlist[nrand48(rand_state) % nset]; FD_SET(sel, writefds); ret++; if (erand48(rand_state) < CHANCE_WRITE2) { sel = fdlist[nrand48(rand_state) % nset]; if (!FD_ISSET(sel, writefds)) { FD_SET(sel, writefds); ret++; } } } } return ret; }