/* * Dropbear SSH * * Copyright (c) 2002-2004 Matt Johnston * Portions Copyright (c) 2004 by Mihnea Stoenescu * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "includes.h" #include "dbutil.h" #include "algo.h" #include "buffer.h" #include "session.h" #include "kex.h" #include "ssh.h" #include "packet.h" #include "bignum.h" #include "random.h" #include "runopts.h" /* diffie-hellman-group1-sha1 value for p */ #define DH_P_1_LEN 128 static const unsigned char dh_p_1[DH_P_1_LEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE6, 0x53, 0x81, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; /* diffie-hellman-group14-sha1 value for p */ #define DH_P_14_LEN 256 static const unsigned char dh_p_14[DH_P_14_LEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36, 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F, 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08, 0xCA, 0x18, 0x21, 0x7C, 0x32, 0x90, 0x5E, 0x46, 0x2E, 0x36, 0xCE, 0x3B, 0xE3, 0x9E, 0x77, 0x2C, 0x18, 0x0E, 0x86, 0x03, 0x9B, 0x27, 0x83, 0xA2, 0xEC, 0x07, 0xA2, 0x8F, 0xB5, 0xC5, 0x5D, 0xF0, 0x6F, 0x4C, 0x52, 0xC9, 0xDE, 0x2B, 0xCB, 0xF6, 0x95, 0x58, 0x17, 0x18, 0x39, 0x95, 0x49, 0x7C, 0xEA, 0x95, 0x6A, 0xE5, 0x15, 0xD2, 0x26, 0x18, 0x98, 0xFA, 0x05, 0x10, 0x15, 0x72, 0x8E, 0x5A, 0x8A, 0xAC, 0xAA, 0x68, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; /* Same for group1 and group14 */ static const int DH_G_VAL = 2; static void kexinitialise(); void gen_new_keys(); #ifndef DISABLE_ZLIB static void gen_new_zstreams(); #endif static void read_kex_algos(); /* helper function for gen_new_keys */ static void hashkeys(unsigned char *out, int outlen, const hash_state * hs, unsigned const char X); /* Send our list of algorithms we can use */ void send_msg_kexinit() { CHECKCLEARTOWRITE(); buf_putbyte(ses.writepayload, SSH_MSG_KEXINIT); /* cookie */ genrandom(buf_getwriteptr(ses.writepayload, 16), 16); buf_incrwritepos(ses.writepayload, 16); /* kex algos */ buf_put_algolist(ses.writepayload, sshkex); /* server_host_key_algorithms */ buf_put_algolist(ses.writepayload, sshhostkey); /* encryption_algorithms_client_to_server */ buf_put_algolist(ses.writepayload, sshciphers); /* encryption_algorithms_server_to_client */ buf_put_algolist(ses.writepayload, sshciphers); /* mac_algorithms_client_to_server */ buf_put_algolist(ses.writepayload, sshhashes); /* mac_algorithms_server_to_client */ buf_put_algolist(ses.writepayload, sshhashes); /* compression_algorithms_client_to_server */ buf_put_algolist(ses.writepayload, ses.compress_algos); /* compression_algorithms_server_to_client */ buf_put_algolist(ses.writepayload, ses.compress_algos); /* languages_client_to_server */ buf_putstring(ses.writepayload, "", 0); /* languages_server_to_client */ buf_putstring(ses.writepayload, "", 0); /* first_kex_packet_follows - unimplemented for now */ buf_putbyte(ses.writepayload, 0x00); /* reserved unit32 */ buf_putint(ses.writepayload, 0); /* set up transmitted kex packet buffer for hashing. * This is freed after the end of the kex */ ses.transkexinit = buf_newcopy(ses.writepayload); encrypt_packet(); ses.dataallowed = 0; /* don't send other packets during kex */ TRACE(("DATAALLOWED=0")) TRACE(("-> KEXINIT")) ses.kexstate.sentkexinit = 1; } /* *** NOTE regarding (send|recv)_msg_newkeys *** * Changed by mihnea from the original kex.c to set dataallowed after a * completed key exchange, no matter the order in which it was performed. * This enables client mode without affecting server functionality. */ /* Bring new keys into use after a key exchange, and let the client know*/ void send_msg_newkeys() { TRACE(("enter send_msg_newkeys")) /* generate the kexinit request */ CHECKCLEARTOWRITE(); buf_putbyte(ses.writepayload, SSH_MSG_NEWKEYS); encrypt_packet(); /* set up our state */ if (ses.kexstate.recvnewkeys) { TRACE(("while RECVNEWKEYS=1")) gen_new_keys(); kexinitialise(); /* we've finished with this kex */ TRACE((" -> DATAALLOWED=1")) ses.dataallowed = 1; /* we can send other packets again now */ ses.kexstate.donefirstkex = 1; } else { ses.kexstate.sentnewkeys = 1; TRACE(("SENTNEWKEYS=1")) } TRACE(("-> MSG_NEWKEYS")) TRACE(("leave send_msg_newkeys")) } /* Bring the new keys into use after a key exchange */ void recv_msg_newkeys() { TRACE(("<- MSG_NEWKEYS")) TRACE(("enter recv_msg_newkeys")) /* simply check if we've sent SSH_MSG_NEWKEYS, and if so, * switch to the new keys */ if (ses.kexstate.sentnewkeys) { TRACE(("while SENTNEWKEYS=1")) gen_new_keys(); kexinitialise(); /* we've finished with this kex */ TRACE((" -> DATAALLOWED=1")) ses.dataallowed = 1; /* we can send other packets again now */ ses.kexstate.donefirstkex = 1; } else { TRACE(("RECVNEWKEYS=1")) ses.kexstate.recvnewkeys = 1; } TRACE(("leave recv_msg_newkeys")) } /* Set up the kex for the first time */ void kexfirstinitialise() { ses.kexstate.donefirstkex = 0; #ifndef DISABLE_ZLIB if (opts.enable_compress) { ses.compress_algos = ssh_compress; } else #endif { ses.compress_algos = ssh_nocompress; } kexinitialise(); } /* Reset the kex state, ready for a new negotiation */ static void kexinitialise() { TRACE(("kexinitialise()")) /* sent/recv'd MSG_KEXINIT */ ses.kexstate.sentkexinit = 0; ses.kexstate.recvkexinit = 0; /* sent/recv'd MSG_NEWKEYS */ ses.kexstate.recvnewkeys = 0; ses.kexstate.sentnewkeys = 0; /* first_packet_follows */ ses.kexstate.firstfollows = 0; ses.kexstate.datatrans = 0; ses.kexstate.datarecv = 0; ses.kexstate.lastkextime = time(NULL); } /* Helper function for gen_new_keys, creates a hash. It makes a copy of the * already initialised hash_state hs, which should already have processed * the dh_K and hash, since these are common. X is the letter 'A', 'B' etc. * out must have at least min(SHA1_HASH_SIZE, outlen) bytes allocated. * The output will only be expanded once, as we are assured that * outlen <= 2*SHA1_HASH_SIZE for all known hashes. * * See Section 7.2 of rfc4253 (ssh transport) for details */ static void hashkeys(unsigned char *out, int outlen, const hash_state * hs, const unsigned char X) { hash_state hs2; unsigned char k2[SHA1_HASH_SIZE]; /* used to extending */ memcpy(&hs2, hs, sizeof(hash_state)); sha1_process(&hs2, &X, 1); sha1_process(&hs2, ses.session_id, SHA1_HASH_SIZE); sha1_done(&hs2, out); if (SHA1_HASH_SIZE < outlen) { /* need to extend */ memcpy(&hs2, hs, sizeof(hash_state)); sha1_process(&hs2, out, SHA1_HASH_SIZE); sha1_done(&hs2, k2); memcpy(&out[SHA1_HASH_SIZE], k2, outlen - SHA1_HASH_SIZE); } } /* Generate the actual encryption/integrity keys, using the results of the * key exchange, as specified in section 7.2 of the transport rfc 4253. * This occurs after the DH key-exchange. * * ses.newkeys is the new set of keys which are generated, these are only * taken into use after both sides have sent a newkeys message */ /* Originally from kex.c, generalized for cli/svr mode --mihnea */ void gen_new_keys() { unsigned char C2S_IV[MAX_IV_LEN]; unsigned char C2S_key[MAX_KEY_LEN]; unsigned char S2C_IV[MAX_IV_LEN]; unsigned char S2C_key[MAX_KEY_LEN]; /* unsigned char key[MAX_KEY_LEN]; */ unsigned char *trans_IV, *trans_key, *recv_IV, *recv_key; hash_state hs; unsigned int C2S_keysize, S2C_keysize; char mactransletter, macrecvletter; /* Client or server specific */ int recv_cipher = 0, trans_cipher = 0; TRACE(("enter gen_new_keys")) /* the dh_K and hash are the start of all hashes, we make use of that */ sha1_init(&hs); sha1_process_mp(&hs, ses.dh_K); mp_clear(ses.dh_K); m_free(ses.dh_K); sha1_process(&hs, ses.hash, SHA1_HASH_SIZE); m_burn(ses.hash, SHA1_HASH_SIZE); if (IS_DROPBEAR_CLIENT) { trans_IV = C2S_IV; recv_IV = S2C_IV; trans_key = C2S_key; recv_key = S2C_key; C2S_keysize = ses.newkeys->trans.algo_crypt->keysize; S2C_keysize = ses.newkeys->recv.algo_crypt->keysize; mactransletter = 'E'; macrecvletter = 'F'; } else { trans_IV = S2C_IV; recv_IV = C2S_IV; trans_key = S2C_key; recv_key = C2S_key; C2S_keysize = ses.newkeys->recv.algo_crypt->keysize; S2C_keysize = ses.newkeys->trans.algo_crypt->keysize; mactransletter = 'F'; macrecvletter = 'E'; } hashkeys(C2S_IV, SHA1_HASH_SIZE, &hs, 'A'); hashkeys(S2C_IV, SHA1_HASH_SIZE, &hs, 'B'); hashkeys(C2S_key, C2S_keysize, &hs, 'C'); hashkeys(S2C_key, S2C_keysize, &hs, 'D'); recv_cipher = find_cipher(ses.newkeys->recv.algo_crypt->cipherdesc->name); if (recv_cipher < 0) dropbear_exit("Crypto error"); if (ses.newkeys->recv.crypt_mode->start(recv_cipher, recv_IV, recv_key, ses.newkeys->recv.algo_crypt->keysize, 0, &ses.newkeys->recv.cipher_state) != CRYPT_OK) { dropbear_exit("Crypto error"); } trans_cipher = find_cipher(ses.newkeys->trans.algo_crypt->cipherdesc->name); if (trans_cipher < 0) dropbear_exit("Crypto error"); if (ses.newkeys->trans.crypt_mode->start(trans_cipher, trans_IV, trans_key, ses.newkeys->trans.algo_crypt->keysize, 0, &ses.newkeys->trans.cipher_state) != CRYPT_OK) { dropbear_exit("Crypto error"); } /* MAC keys */ hashkeys(ses.newkeys->trans.mackey, ses.newkeys->trans.algo_mac->keysize, &hs, mactransletter); hashkeys(ses.newkeys->recv.mackey, ses.newkeys->recv.algo_mac->keysize, &hs, macrecvletter); ses.newkeys->trans.hash_index = find_hash(ses.newkeys->trans.algo_mac->hashdesc->name), ses.newkeys->recv.hash_index = find_hash(ses.newkeys->recv.algo_mac->hashdesc->name), #ifndef DISABLE_ZLIB gen_new_zstreams(); #endif /* Switch over to the new keys */ m_burn(ses.keys, sizeof(struct key_context)); m_free(ses.keys); ses.keys = ses.newkeys; ses.newkeys = NULL; m_burn(C2S_IV, sizeof(C2S_IV)); m_burn(C2S_key, sizeof(C2S_key)); m_burn(S2C_IV, sizeof(S2C_IV)); m_burn(S2C_key, sizeof(S2C_key)); TRACE(("leave gen_new_keys")) } #ifndef DISABLE_ZLIB int is_compress_trans() { return ses.keys->trans.algo_comp == DROPBEAR_COMP_ZLIB || (ses.authstate.authdone && ses.keys->trans.algo_comp == DROPBEAR_COMP_ZLIB_DELAY); } int is_compress_recv() { return ses.keys->recv.algo_comp == DROPBEAR_COMP_ZLIB || (ses.authstate.authdone && ses.keys->recv.algo_comp == DROPBEAR_COMP_ZLIB_DELAY); } /* Set up new zlib compression streams, close the old ones. Only * called from gen_new_keys() */ static void gen_new_zstreams() { /* create new zstreams */ if (ses.newkeys->recv.algo_comp == DROPBEAR_COMP_ZLIB || ses.newkeys->recv.algo_comp == DROPBEAR_COMP_ZLIB_DELAY) { ses.newkeys->recv.zstream = (z_streamp)m_malloc(sizeof(z_stream)); ses.newkeys->recv.zstream->zalloc = Z_NULL; ses.newkeys->recv.zstream->zfree = Z_NULL; if (inflateInit(ses.newkeys->recv.zstream) != Z_OK) { dropbear_exit("zlib error"); } } else { ses.newkeys->recv.zstream = NULL; } if (ses.newkeys->trans.algo_comp == DROPBEAR_COMP_ZLIB || ses.newkeys->trans.algo_comp == DROPBEAR_COMP_ZLIB_DELAY) { ses.newkeys->trans.zstream = (z_streamp)m_malloc(sizeof(z_stream)); ses.newkeys->trans.zstream->zalloc = Z_NULL; ses.newkeys->trans.zstream->zfree = Z_NULL; if (deflateInit2(ses.newkeys->trans.zstream, Z_DEFAULT_COMPRESSION, Z_DEFLATED, DROPBEAR_ZLIB_WINDOW_BITS, DROPBEAR_ZLIB_MEM_LEVEL, Z_DEFAULT_STRATEGY) != Z_OK) { dropbear_exit("zlib error"); } } else { ses.newkeys->trans.zstream = NULL; } /* clean up old keys */ if (ses.keys->recv.zstream != NULL) { if (inflateEnd(ses.keys->recv.zstream) == Z_STREAM_ERROR) { /* Z_DATA_ERROR is ok, just means that stream isn't ended */ dropbear_exit("Crypto error"); } m_free(ses.keys->recv.zstream); } if (ses.keys->trans.zstream != NULL) { if (deflateEnd(ses.keys->trans.zstream) == Z_STREAM_ERROR) { /* Z_DATA_ERROR is ok, just means that stream isn't ended */ dropbear_exit("Crypto error"); } m_free(ses.keys->trans.zstream); } } #endif /* DISABLE_ZLIB */ /* Executed upon receiving a kexinit message from the client to initiate * key exchange. If we haven't already done so, we send the list of our * preferred algorithms. The client's requested algorithms are processed, * and we calculate the first portion of the key-exchange-hash for used * later in the key exchange. No response is sent, as the client should * initiate the diffie-hellman key exchange */ /* Originally from kex.c, generalized for cli/svr mode --mihnea */ /* Belongs in common_kex.c where it should be moved after review */ void recv_msg_kexinit() { unsigned int kexhashbuf_len = 0; unsigned int remote_ident_len = 0; unsigned int local_ident_len = 0; TRACE(("<- KEXINIT")) TRACE(("enter recv_msg_kexinit")) if (!ses.kexstate.sentkexinit) { /* we need to send a kex packet */ send_msg_kexinit(); TRACE(("continue recv_msg_kexinit: sent kexinit")) } /* start the kex hash */ local_ident_len = strlen(LOCAL_IDENT); remote_ident_len = strlen((char*)ses.remoteident); kexhashbuf_len = local_ident_len + remote_ident_len + ses.transkexinit->len + ses.payload->len + KEXHASHBUF_MAX_INTS; ses.kexhashbuf = buf_new(kexhashbuf_len); if (IS_DROPBEAR_CLIENT) { /* read the peer's choice of algos */ read_kex_algos(); /* V_C, the client's version string (CR and NL excluded) */ buf_putstring(ses.kexhashbuf, (unsigned char*)LOCAL_IDENT, local_ident_len); /* V_S, the server's version string (CR and NL excluded) */ buf_putstring(ses.kexhashbuf, ses.remoteident, remote_ident_len); /* I_C, the payload of the client's SSH_MSG_KEXINIT */ buf_putstring(ses.kexhashbuf, ses.transkexinit->data, ses.transkexinit->len); /* I_S, the payload of the server's SSH_MSG_KEXINIT */ buf_setpos(ses.payload, 0); buf_putstring(ses.kexhashbuf, ses.payload->data, ses.payload->len); } else { /* SERVER */ /* read the peer's choice of algos */ read_kex_algos(); /* V_C, the client's version string (CR and NL excluded) */ buf_putstring(ses.kexhashbuf, ses.remoteident, remote_ident_len); /* V_S, the server's version string (CR and NL excluded) */ buf_putstring(ses.kexhashbuf, (unsigned char*)LOCAL_IDENT, local_ident_len); /* I_C, the payload of the client's SSH_MSG_KEXINIT */ buf_setpos(ses.payload, 0); buf_putstring(ses.kexhashbuf, ses.payload->data, ses.payload->len); /* I_S, the payload of the server's SSH_MSG_KEXINIT */ buf_putstring(ses.kexhashbuf, ses.transkexinit->data, ses.transkexinit->len); ses.requirenext = SSH_MSG_KEXDH_INIT; } buf_free(ses.transkexinit); ses.transkexinit = NULL; /* the rest of ses.kexhashbuf will be done after DH exchange */ ses.kexstate.recvkexinit = 1; TRACE(("leave recv_msg_kexinit")) } static void load_dh_p(mp_int * dh_p) { switch (ses.newkeys->algo_kex) { case DROPBEAR_KEX_DH_GROUP1: bytes_to_mp(dh_p, dh_p_1, DH_P_1_LEN); break; case DROPBEAR_KEX_DH_GROUP14: bytes_to_mp(dh_p, dh_p_14, DH_P_14_LEN); break; } } /* Initialises and generate one side of the diffie-hellman key exchange values. * See the transport rfc 4253 section 8 for details */ /* dh_pub and dh_priv MUST be already initialised */ void gen_kexdh_vals(mp_int *dh_pub, mp_int *dh_priv) { DEF_MP_INT(dh_p); DEF_MP_INT(dh_q); DEF_MP_INT(dh_g); TRACE(("enter send_msg_kexdh_reply")) m_mp_init_multi(&dh_g, &dh_p, &dh_q, NULL); /* read the prime and generator*/ load_dh_p(&dh_p); if (mp_set_int(&dh_g, DH_G_VAL) != MP_OKAY) { dropbear_exit("Diffie-Hellman error"); } /* calculate q = (p-1)/2 */ /* dh_priv is just a temp var here */ if (mp_sub_d(&dh_p, 1, dh_priv) != MP_OKAY) { dropbear_exit("Diffie-Hellman error"); } if (mp_div_2(dh_priv, &dh_q) != MP_OKAY) { dropbear_exit("Diffie-Hellman error"); } /* Generate a private portion 0 < dh_priv < dh_q */ gen_random_mpint(&dh_q, dh_priv); /* f = g^y mod p */ if (mp_exptmod(&dh_g, dh_priv, &dh_p, dh_pub) != MP_OKAY) { dropbear_exit("Diffie-Hellman error"); } mp_clear_multi(&dh_g, &dh_p, &dh_q, NULL); } /* This function is fairly common between client/server, with some substitution * of dh_e/dh_f etc. Hence these arguments: * dh_pub_us is 'e' for the client, 'f' for the server. dh_pub_them is * vice-versa. dh_priv is the x/y value corresponding to dh_pub_us */ void kexdh_comb_key(mp_int *dh_pub_us, mp_int *dh_priv, mp_int *dh_pub_them, sign_key *hostkey) { mp_int dh_p; mp_int *dh_e = NULL, *dh_f = NULL; hash_state hs; /* read the prime and generator*/ m_mp_init(&dh_p); load_dh_p(&dh_p); /* Check that dh_pub_them (dh_e or dh_f) is in the range [1, p-1] */ if (mp_cmp(dh_pub_them, &dh_p) != MP_LT || mp_cmp_d(dh_pub_them, 0) != MP_GT) { dropbear_exit("Diffie-Hellman error"); } /* K = e^y mod p = f^x mod p */ ses.dh_K = (mp_int*)m_malloc(sizeof(mp_int)); m_mp_init(ses.dh_K); if (mp_exptmod(dh_pub_them, dh_priv, &dh_p, ses.dh_K) != MP_OKAY) { dropbear_exit("Diffie-Hellman error"); } /* clear no longer needed vars */ mp_clear_multi(&dh_p, NULL); /* From here on, the code needs to work with the _same_ vars on each side, * not vice-versaing for client/server */ if (IS_DROPBEAR_CLIENT) { dh_e = dh_pub_us; dh_f = dh_pub_them; } else { dh_e = dh_pub_them; dh_f = dh_pub_us; } /* Create the remainder of the hash buffer, to generate the exchange hash */ /* K_S, the host key */ buf_put_pub_key(ses.kexhashbuf, hostkey, ses.newkeys->algo_hostkey); /* e, exchange value sent by the client */ buf_putmpint(ses.kexhashbuf, dh_e); /* f, exchange value sent by the server */ buf_putmpint(ses.kexhashbuf, dh_f); /* K, the shared secret */ buf_putmpint(ses.kexhashbuf, ses.dh_K); /* calculate the hash H to sign */ sha1_init(&hs); buf_setpos(ses.kexhashbuf, 0); sha1_process(&hs, buf_getptr(ses.kexhashbuf, ses.kexhashbuf->len), ses.kexhashbuf->len); sha1_done(&hs, ses.hash); buf_burn(ses.kexhashbuf); buf_free(ses.kexhashbuf); ses.kexhashbuf = NULL; /* first time around, we set the session_id to H */ if (ses.session_id == NULL) { /* create the session_id, this never needs freeing */ ses.session_id = (unsigned char*)m_malloc(SHA1_HASH_SIZE); memcpy(ses.session_id, ses.hash, SHA1_HASH_SIZE); } } /* read the other side's algo list. buf_match_algo is a callback to match * algos for the client or server. */ static void read_kex_algos() { /* for asymmetry */ algo_type * c2s_hash_algo = NULL; algo_type * s2c_hash_algo = NULL; algo_type * c2s_cipher_algo = NULL; algo_type * s2c_cipher_algo = NULL; algo_type * c2s_comp_algo = NULL; algo_type * s2c_comp_algo = NULL; /* the generic one */ algo_type * algo = NULL; /* which algo couldn't match */ char * erralgo = NULL; int goodguess = 0; int allgood = 1; /* we AND this with each goodguess and see if its still true after */ buf_incrpos(ses.payload, 16); /* start after the cookie */ ses.newkeys = (struct key_context*)m_malloc(sizeof(struct key_context)); /* kex_algorithms */ algo = ses.buf_match_algo(ses.payload, sshkex, &goodguess); allgood &= goodguess; if (algo == NULL) { erralgo = "kex"; goto error; } TRACE(("kex algo %s", algo->name)) ses.newkeys->algo_kex = algo->val; /* server_host_key_algorithms */ algo = ses.buf_match_algo(ses.payload, sshhostkey, &goodguess); allgood &= goodguess; if (algo == NULL) { erralgo = "hostkey"; goto error; } TRACE(("hostkey algo %s", algo->name)) ses.newkeys->algo_hostkey = algo->val; /* encryption_algorithms_client_to_server */ c2s_cipher_algo = ses.buf_match_algo(ses.payload, sshciphers, &goodguess); if (c2s_cipher_algo == NULL) { erralgo = "enc c->s"; goto error; } TRACE(("enc c2s is %s", c2s_cipher_algo->name)) /* encryption_algorithms_server_to_client */ s2c_cipher_algo = ses.buf_match_algo(ses.payload, sshciphers, &goodguess); if (s2c_cipher_algo == NULL) { erralgo = "enc s->c"; goto error; } TRACE(("enc s2c is %s", s2c_cipher_algo->name)) /* mac_algorithms_client_to_server */ c2s_hash_algo = ses.buf_match_algo(ses.payload, sshhashes, &goodguess); if (c2s_hash_algo == NULL) { erralgo = "mac c->s"; goto error; } TRACE(("hash c2s is %s", c2s_hash_algo->name)) /* mac_algorithms_server_to_client */ s2c_hash_algo = ses.buf_match_algo(ses.payload, sshhashes, &goodguess); if (s2c_hash_algo == NULL) { erralgo = "mac s->c"; goto error; } TRACE(("hash s2c is %s", s2c_hash_algo->name)) /* compression_algorithms_client_to_server */ c2s_comp_algo = ses.buf_match_algo(ses.payload, ses.compress_algos, &goodguess); if (c2s_comp_algo == NULL) { erralgo = "comp c->s"; goto error; } TRACE(("hash c2s is %s", c2s_comp_algo->name)) /* compression_algorithms_server_to_client */ s2c_comp_algo = ses.buf_match_algo(ses.payload, ses.compress_algos, &goodguess); if (s2c_comp_algo == NULL) { erralgo = "comp s->c"; goto error; } TRACE(("hash s2c is %s", s2c_comp_algo->name)) /* languages_client_to_server */ buf_eatstring(ses.payload); /* languages_server_to_client */ buf_eatstring(ses.payload); /* first_kex_packet_follows */ if (buf_getbool(ses.payload)) { ses.kexstate.firstfollows = 1; /* if the guess wasn't good, we ignore the packet sent */ if (!allgood) { ses.ignorenext = 1; } } /* Handle the asymmetry */ if (IS_DROPBEAR_CLIENT) { ses.newkeys->recv.algo_crypt = (struct dropbear_cipher*)s2c_cipher_algo->data; ses.newkeys->trans.algo_crypt = (struct dropbear_cipher*)c2s_cipher_algo->data; ses.newkeys->recv.crypt_mode = (struct dropbear_cipher_mode*)s2c_cipher_algo->mode; ses.newkeys->trans.crypt_mode = (struct dropbear_cipher_mode*)c2s_cipher_algo->mode; ses.newkeys->recv.algo_mac = (struct dropbear_hash*)s2c_hash_algo->data; ses.newkeys->trans.algo_mac = (struct dropbear_hash*)c2s_hash_algo->data; ses.newkeys->recv.algo_comp = s2c_comp_algo->val; ses.newkeys->trans.algo_comp = c2s_comp_algo->val; } else { /* SERVER */ ses.newkeys->recv.algo_crypt = (struct dropbear_cipher*)c2s_cipher_algo->data; ses.newkeys->trans.algo_crypt = (struct dropbear_cipher*)s2c_cipher_algo->data; ses.newkeys->recv.crypt_mode = (struct dropbear_cipher_mode*)c2s_cipher_algo->mode; ses.newkeys->trans.crypt_mode = (struct dropbear_cipher_mode*)s2c_cipher_algo->mode; ses.newkeys->recv.algo_mac = (struct dropbear_hash*)c2s_hash_algo->data; ses.newkeys->trans.algo_mac = (struct dropbear_hash*)s2c_hash_algo->data; ses.newkeys->recv.algo_comp = c2s_comp_algo->val; ses.newkeys->trans.algo_comp = s2c_comp_algo->val; } /* reserved for future extensions */ buf_getint(ses.payload); return; error: dropbear_exit("No matching algo %s", erralgo); }