diff options
Diffstat (limited to 'libtommath/tommath.h')
-rw-r--r-- | libtommath/tommath.h | 379 |
1 files changed, 209 insertions, 170 deletions
diff --git a/libtommath/tommath.h b/libtommath/tommath.h index 88ad122..8b3b907 100644 --- a/libtommath/tommath.h +++ b/libtommath/tommath.h @@ -7,10 +7,7 @@ * Michael Fromberger but has been written from scratch with * additional optimizations in place. * - * The library is free for all purposes without any express - * guarantee it works. - * - * Tom St Denis, tstdenis82@gmail.com, http://math.libtomcrypt.com + * SPDX-License-Identifier: Unlicense */ #ifndef BN_H_ #define BN_H_ @@ -26,6 +23,11 @@ extern "C" { #endif +/* MS Visual C++ doesn't have a 128bit type for words, so fall back to 32bit MPI's (where words are 64bit) */ +#if defined(_MSC_VER) || defined(__LLP64__) || defined(__e2k__) || defined(__LCC__) +# define MP_32BIT +#endif + /* detect 64-bit mode if possible */ #if defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) || \ defined(__powerpc64__) || defined(__ppc64__) || defined(__PPC64__) || \ @@ -33,9 +35,15 @@ extern "C" { defined(__sparcv9) || defined(__sparc_v9__) || defined(__sparc64__) || \ defined(__ia64) || defined(__ia64__) || defined(__itanium__) || defined(_M_IA64) || \ defined(__LP64__) || defined(_LP64) || defined(__64BIT__) - #if !(defined(MP_32BIT) || defined(MP_16BIT) || defined(MP_8BIT)) - #define MP_64BIT - #endif +# if !(defined(MP_32BIT) || defined(MP_16BIT) || defined(MP_8BIT)) +# if defined(__GNUC__) +/* we support 128bit integers only via: __attribute__((mode(TI))) */ +# define MP_64BIT +# else +/* otherwise we fall back to MP_32BIT even on 64bit platforms */ +# define MP_32BIT +# endif +# endif #endif /* some default configurations. @@ -47,68 +55,47 @@ extern "C" { * [any size beyond that is ok provided it doesn't overflow the data type] */ #ifdef MP_8BIT - typedef uint8_t mp_digit; - typedef uint16_t mp_word; -#define MP_SIZEOF_MP_DIGIT 1 -#ifdef DIGIT_BIT -#error You must not define DIGIT_BIT when using MP_8BIT -#endif +typedef uint8_t mp_digit; +typedef uint16_t mp_word; +# define MP_SIZEOF_MP_DIGIT 1 +# ifdef DIGIT_BIT +# error You must not define DIGIT_BIT when using MP_8BIT +# endif #elif defined(MP_16BIT) - typedef uint16_t mp_digit; - typedef uint32_t mp_word; -#define MP_SIZEOF_MP_DIGIT 2 -#ifdef DIGIT_BIT -#error You must not define DIGIT_BIT when using MP_16BIT -#endif +typedef uint16_t mp_digit; +typedef uint32_t mp_word; +# define MP_SIZEOF_MP_DIGIT 2 +# ifdef DIGIT_BIT +# error You must not define DIGIT_BIT when using MP_16BIT +# endif #elif defined(MP_64BIT) - /* for GCC only on supported platforms */ - typedef uint64_t mp_digit; -#if defined(_WIN32) - typedef unsigned __int128 mp_word; -#elif defined(__GNUC__) - typedef unsigned long mp_word __attribute__ ((mode(TI))); +/* for GCC only on supported platforms */ +typedef uint64_t mp_digit; +typedef unsigned long mp_word __attribute__((mode(TI))); +# define DIGIT_BIT 60 #else - /* it seems you have a problem - * but we assume you can somewhere define your own uint128_t */ - typedef uint128_t mp_word; -#endif - - #define DIGIT_BIT 60 -#else - /* this is the default case, 28-bit digits */ - - /* this is to make porting into LibTomCrypt easier :-) */ - typedef uint32_t mp_digit; - typedef uint64_t mp_word; - -#ifdef MP_31BIT - /* this is an extension that uses 31-bit digits */ - #define DIGIT_BIT 31 -#else - /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */ - #define DIGIT_BIT 28 - #define MP_28BIT -#endif +/* this is the default case, 28-bit digits */ + +/* this is to make porting into LibTomCrypt easier :-) */ +typedef uint32_t mp_digit; +typedef uint64_t mp_word; + +# ifdef MP_31BIT +/* this is an extension that uses 31-bit digits */ +# define DIGIT_BIT 31 +# else +/* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */ +# define DIGIT_BIT 28 +# define MP_28BIT +# endif #endif /* otherwise the bits per digit is calculated automatically from the size of a mp_digit */ #ifndef DIGIT_BIT - #define DIGIT_BIT (((CHAR_BIT * MP_SIZEOF_MP_DIGIT) - 1)) /* bits per digit */ - typedef uint_least32_t mp_min_u32; +# define DIGIT_BIT (((CHAR_BIT * MP_SIZEOF_MP_DIGIT) - 1)) /* bits per digit */ +typedef uint_least32_t mp_min_u32; #else - typedef mp_digit mp_min_u32; -#endif - -/* use arc4random on platforms that support it */ -#if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__) - #define MP_GEN_RANDOM() arc4random() - #define MP_GEN_RANDOM_MAX 0xffffffff -#endif - -/* use rand() as fall-back if there's no better rand function */ -#ifndef MP_GEN_RANDOM - #define MP_GEN_RANDOM() rand() - #define MP_GEN_RANDOM_MAX RAND_MAX +typedef mp_digit mp_min_u32; #endif #define MP_DIGIT_BIT DIGIT_BIT @@ -127,6 +114,7 @@ extern "C" { #define MP_MEM -2 /* out of mem */ #define MP_VAL -3 /* invalid input */ #define MP_RANGE MP_VAL +#define MP_ITER -4 /* Max. iterations reached */ #define MP_YES 1 /* yes response */ #define MP_NO 0 /* no response */ @@ -140,38 +128,38 @@ typedef int mp_err; /* you'll have to tune these... */ extern int KARATSUBA_MUL_CUTOFF, - KARATSUBA_SQR_CUTOFF, - TOOM_MUL_CUTOFF, - TOOM_SQR_CUTOFF; + KARATSUBA_SQR_CUTOFF, + TOOM_MUL_CUTOFF, + TOOM_SQR_CUTOFF; /* define this to use lower memory usage routines (exptmods mostly) */ /* #define MP_LOW_MEM */ /* default precision */ #ifndef MP_PREC - #ifndef MP_LOW_MEM - #define MP_PREC 32 /* default digits of precision */ - #else - #define MP_PREC 8 /* default digits of precision */ - #endif +# ifndef MP_LOW_MEM +# define MP_PREC 32 /* default digits of precision */ +# else +# define MP_PREC 8 /* default digits of precision */ +# endif #endif /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ -#define MP_WARRAY (1 << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) + 1)) +#define MP_WARRAY (1u << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) + 1)) /* the infamous mp_int structure */ typedef struct { - int used, alloc, sign; - mp_digit *dp; + int used, alloc, sign; + mp_digit *dp; } mp_int; /* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */ typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); -#define USED(m) ((m)->used) -#define DIGIT(m,k) ((m)->dp[(k)]) -#define SIGN(m) ((m)->sign) +#define USED(m) ((m)->used) +#define DIGIT(m, k) ((m)->dp[(k)]) +#define SIGN(m) ((m)->sign) /* error code to char* string */ const char *mp_error_to_string(int code); @@ -203,7 +191,7 @@ int mp_init_size(mp_int *a, int size); /* ---> Basic Manipulations <--- */ #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) -#define mp_iseven(a) ((((a)->used > 0) && (((a)->dp[0] & 1u) == 0u)) ? MP_YES : MP_NO) +#define mp_iseven(a) ((((a)->used == 0) || (((a)->dp[0] & 1u) == 0u)) ? MP_YES : MP_NO) #define mp_isodd(a) ((((a)->used > 0) && (((a)->dp[0] & 1u) == 1u)) ? MP_YES : MP_NO) #define mp_isneg(a) (((a)->sign != MP_ZPOS) ? MP_YES : MP_NO) @@ -223,34 +211,34 @@ int mp_set_long(mp_int *a, unsigned long b); int mp_set_long_long(mp_int *a, unsigned long long b); /* get a 32-bit value */ -unsigned long mp_get_int(mp_int * a); +unsigned long mp_get_int(const mp_int *a); /* get a platform dependent unsigned long value */ -unsigned long mp_get_long(mp_int * a); +unsigned long mp_get_long(const mp_int *a); /* get a platform dependent unsigned long long value */ -unsigned long long mp_get_long_long(mp_int * a); +unsigned long long mp_get_long_long(const mp_int *a); /* initialize and set a digit */ -int mp_init_set (mp_int * a, mp_digit b); +int mp_init_set(mp_int *a, mp_digit b); /* initialize and set 32-bit value */ -int mp_init_set_int (mp_int * a, unsigned long b); +int mp_init_set_int(mp_int *a, unsigned long b); /* copy, b = a */ -int mp_copy(mp_int *a, mp_int *b); +int mp_copy(const mp_int *a, mp_int *b); /* inits and copies, a = b */ -int mp_init_copy(mp_int *a, mp_int *b); +int mp_init_copy(mp_int *a, const mp_int *b); /* trim unused digits */ void mp_clamp(mp_int *a); /* import binary data */ -int mp_import(mp_int* rop, size_t count, int order, size_t size, int endian, size_t nails, const void* op); +int mp_import(mp_int *rop, size_t count, int order, size_t size, int endian, size_t nails, const void *op); /* export binary data */ -int mp_export(void* rop, size_t* countp, int order, size_t size, int endian, size_t nails, mp_int* op); +int mp_export(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, const mp_int *op); /* ---> digit manipulation <--- */ @@ -261,234 +249,285 @@ void mp_rshd(mp_int *a, int b); int mp_lshd(mp_int *a, int b); /* c = a / 2**b, implemented as c = a >> b */ -int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d); +int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d); /* b = a/2 */ -int mp_div_2(mp_int *a, mp_int *b); +int mp_div_2(const mp_int *a, mp_int *b); /* c = a * 2**b, implemented as c = a << b */ -int mp_mul_2d(mp_int *a, int b, mp_int *c); +int mp_mul_2d(const mp_int *a, int b, mp_int *c); /* b = a*2 */ -int mp_mul_2(mp_int *a, mp_int *b); +int mp_mul_2(const mp_int *a, mp_int *b); /* c = a mod 2**b */ -int mp_mod_2d(mp_int *a, int b, mp_int *c); +int mp_mod_2d(const mp_int *a, int b, mp_int *c); /* computes a = 2**b */ int mp_2expt(mp_int *a, int b); /* Counts the number of lsbs which are zero before the first zero bit */ -int mp_cnt_lsb(mp_int *a); +int mp_cnt_lsb(const mp_int *a); /* I Love Earth! */ -/* makes a pseudo-random int of a given size */ +/* makes a pseudo-random mp_int of a given size */ int mp_rand(mp_int *a, int digits); +/* makes a pseudo-random small int of a given size */ +int mp_rand_digit(mp_digit *r); + +#ifdef MP_PRNG_ENABLE_LTM_RNG +/* A last resort to provide random data on systems without any of the other + * implemented ways to gather entropy. + * It is compatible with `rng_get_bytes()` from libtomcrypt so you could + * provide that one and then set `ltm_rng = rng_get_bytes;` */ +extern unsigned long (*ltm_rng)(unsigned char *out, unsigned long outlen, void (*callback)(void)); +extern void (*ltm_rng_callback)(void); +#endif /* ---> binary operations <--- */ /* c = a XOR b */ -int mp_xor(mp_int *a, mp_int *b, mp_int *c); +int mp_xor(const mp_int *a, const mp_int *b, mp_int *c); /* c = a OR b */ -int mp_or(mp_int *a, mp_int *b, mp_int *c); +int mp_or(const mp_int *a, const mp_int *b, mp_int *c); /* c = a AND b */ -int mp_and(mp_int *a, mp_int *b, mp_int *c); +int mp_and(const mp_int *a, const mp_int *b, mp_int *c); + +/* Checks the bit at position b and returns MP_YES + if the bit is 1, MP_NO if it is 0 and MP_VAL + in case of error */ +int mp_get_bit(const mp_int *a, int b); + +/* c = a XOR b (two complement) */ +int mp_tc_xor(const mp_int *a, const mp_int *b, mp_int *c); + +/* c = a OR b (two complement) */ +int mp_tc_or(const mp_int *a, const mp_int *b, mp_int *c); + +/* c = a AND b (two complement) */ +int mp_tc_and(const mp_int *a, const mp_int *b, mp_int *c); + +/* right shift (two complement) */ +int mp_tc_div_2d(const mp_int *a, int b, mp_int *c); /* ---> Basic arithmetic <--- */ +/* b = ~a */ +int mp_complement(const mp_int *a, mp_int *b); + /* b = -a */ -int mp_neg(mp_int *a, mp_int *b); +int mp_neg(const mp_int *a, mp_int *b); /* b = |a| */ -int mp_abs(mp_int *a, mp_int *b); +int mp_abs(const mp_int *a, mp_int *b); /* compare a to b */ -int mp_cmp(mp_int *a, mp_int *b); +int mp_cmp(const mp_int *a, const mp_int *b); /* compare |a| to |b| */ -int mp_cmp_mag(mp_int *a, mp_int *b); +int mp_cmp_mag(const mp_int *a, const mp_int *b); /* c = a + b */ -int mp_add(mp_int *a, mp_int *b, mp_int *c); +int mp_add(const mp_int *a, const mp_int *b, mp_int *c); /* c = a - b */ -int mp_sub(mp_int *a, mp_int *b, mp_int *c); +int mp_sub(const mp_int *a, const mp_int *b, mp_int *c); /* c = a * b */ -int mp_mul(mp_int *a, mp_int *b, mp_int *c); +int mp_mul(const mp_int *a, const mp_int *b, mp_int *c); /* b = a*a */ -int mp_sqr(mp_int *a, mp_int *b); +int mp_sqr(const mp_int *a, mp_int *b); /* a/b => cb + d == a */ -int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d); +int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d); /* c = a mod b, 0 <= c < b */ -int mp_mod(mp_int *a, mp_int *b, mp_int *c); +int mp_mod(const mp_int *a, const mp_int *b, mp_int *c); /* ---> single digit functions <--- */ /* compare against a single digit */ -int mp_cmp_d(mp_int *a, mp_digit b); +int mp_cmp_d(const mp_int *a, mp_digit b); /* c = a + b */ -int mp_add_d(mp_int *a, mp_digit b, mp_int *c); +int mp_add_d(const mp_int *a, mp_digit b, mp_int *c); /* c = a - b */ -int mp_sub_d(mp_int *a, mp_digit b, mp_int *c); +int mp_sub_d(const mp_int *a, mp_digit b, mp_int *c); /* c = a * b */ -int mp_mul_d(mp_int *a, mp_digit b, mp_int *c); +int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c); /* a/b => cb + d == a */ -int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d); +int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d); /* a/3 => 3c + d == a */ -int mp_div_3(mp_int *a, mp_int *c, mp_digit *d); +int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d); /* c = a**b */ -int mp_expt_d(mp_int *a, mp_digit b, mp_int *c); -int mp_expt_d_ex (mp_int * a, mp_digit b, mp_int * c, int fast); +int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c); +int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast); /* c = a mod b, 0 <= c < b */ -int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c); +int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c); /* ---> number theory <--- */ /* d = a + b (mod c) */ -int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); +int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d); /* d = a - b (mod c) */ -int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); +int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d); /* d = a * b (mod c) */ -int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); +int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d); /* c = a * a (mod b) */ -int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c); +int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c); /* c = 1/a (mod b) */ -int mp_invmod(mp_int *a, mp_int *b, mp_int *c); +int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c); /* c = (a, b) */ -int mp_gcd(mp_int *a, mp_int *b, mp_int *c); +int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c); /* produces value such that U1*a + U2*b = U3 */ -int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3); +int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3); /* c = [a, b] or (a*b)/(a, b) */ -int mp_lcm(mp_int *a, mp_int *b, mp_int *c); +int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c); /* finds one of the b'th root of a, such that |c|**b <= |a| * * returns error if a < 0 and b is even */ -int mp_n_root(mp_int *a, mp_digit b, mp_int *c); -int mp_n_root_ex (mp_int * a, mp_digit b, mp_int * c, int fast); +int mp_n_root(const mp_int *a, mp_digit b, mp_int *c); +int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast); /* special sqrt algo */ -int mp_sqrt(mp_int *arg, mp_int *ret); +int mp_sqrt(const mp_int *arg, mp_int *ret); /* special sqrt (mod prime) */ -int mp_sqrtmod_prime(mp_int *arg, mp_int *prime, mp_int *ret); +int mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret); /* is number a square? */ -int mp_is_square(mp_int *arg, int *ret); +int mp_is_square(const mp_int *arg, int *ret); /* computes the jacobi c = (a | n) (or Legendre if b is prime) */ -int mp_jacobi(mp_int *a, mp_int *n, int *c); +int mp_jacobi(const mp_int *a, const mp_int *n, int *c); + +/* computes the Kronecker symbol c = (a | p) (like jacobi() but with {a,p} in Z */ +int mp_kronecker(const mp_int *a, const mp_int *p, int *c); /* used to setup the Barrett reduction for a given modulus b */ -int mp_reduce_setup(mp_int *a, mp_int *b); +int mp_reduce_setup(mp_int *a, const mp_int *b); /* Barrett Reduction, computes a (mod b) with a precomputed value c * - * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely - * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code]. + * Assumes that 0 < x <= m*m, note if 0 > x > -(m*m) then you can merely + * compute the reduction as -1 * mp_reduce(mp_abs(x)) [pseudo code]. */ -int mp_reduce(mp_int *a, mp_int *b, mp_int *c); +int mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu); /* setups the montgomery reduction */ -int mp_montgomery_setup(mp_int *a, mp_digit *mp); +int mp_montgomery_setup(const mp_int *n, mp_digit *rho); /* computes a = B**n mod b without division or multiplication useful for * normalizing numbers in a Montgomery system. */ -int mp_montgomery_calc_normalization(mp_int *a, mp_int *b); +int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b); /* computes x/R == x (mod N) via Montgomery Reduction */ -int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); +int mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho); /* returns 1 if a is a valid DR modulus */ -int mp_dr_is_modulus(mp_int *a); +int mp_dr_is_modulus(const mp_int *a); /* sets the value of "d" required for mp_dr_reduce */ -void mp_dr_setup(mp_int *a, mp_digit *d); +void mp_dr_setup(const mp_int *a, mp_digit *d); -/* reduces a modulo b using the Diminished Radix method */ -int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp); +/* reduces a modulo n using the Diminished Radix method */ +int mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k); /* returns true if a can be reduced with mp_reduce_2k */ -int mp_reduce_is_2k(mp_int *a); +int mp_reduce_is_2k(const mp_int *a); /* determines k value for 2k reduction */ -int mp_reduce_2k_setup(mp_int *a, mp_digit *d); +int mp_reduce_2k_setup(const mp_int *a, mp_digit *d); /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ -int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d); +int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d); /* returns true if a can be reduced with mp_reduce_2k_l */ -int mp_reduce_is_2k_l(mp_int *a); +int mp_reduce_is_2k_l(const mp_int *a); /* determines k value for 2k reduction */ -int mp_reduce_2k_setup_l(mp_int *a, mp_int *d); +int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d); /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ -int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d); +int mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d); -/* d = a**b (mod c) */ -int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); +/* Y = G**X (mod P) */ +int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y); /* ---> Primes <--- */ /* number of primes */ #ifdef MP_8BIT - #define PRIME_SIZE 31 +# define PRIME_SIZE 31 #else - #define PRIME_SIZE 256 +# define PRIME_SIZE 256 #endif /* table of first PRIME_SIZE primes */ extern const mp_digit ltm_prime_tab[PRIME_SIZE]; /* result=1 if a is divisible by one of the first PRIME_SIZE primes */ -int mp_prime_is_divisible(mp_int *a, int *result); +int mp_prime_is_divisible(const mp_int *a, int *result); /* performs one Fermat test of "a" using base "b". * Sets result to 0 if composite or 1 if probable prime */ -int mp_prime_fermat(mp_int *a, mp_int *b, int *result); +int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result); /* performs one Miller-Rabin test of "a" using base "b". * Sets result to 0 if composite or 1 if probable prime */ -int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result); +int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result); /* This gives [for a given bit size] the number of trials required * such that Miller-Rabin gives a prob of failure lower than 2^-96 */ int mp_prime_rabin_miller_trials(int size); -/* performs t rounds of Miller-Rabin on "a" using the first - * t prime bases. Also performs an initial sieve of trial +/* performs one strong Lucas-Selfridge test of "a". + * Sets result to 0 if composite or 1 if probable prime + */ +int mp_prime_strong_lucas_selfridge(const mp_int *a, int *result); + +/* performs one Frobenius test of "a" as described by Paul Underwood. + * Sets result to 0 if composite or 1 if probable prime + */ +int mp_prime_frobenius_underwood(const mp_int *N, int *result); + +/* performs t random rounds of Miller-Rabin on "a" additional to + * bases 2 and 3. Also performs an initial sieve of trial * division. Determines if "a" is prime with probability * of error no more than (1/4)**t. + * Both a strong Lucas-Selfridge to complete the BPSW test + * and a separate Frobenius test are available at compile time. + * With t<0 a deterministic test is run for primes up to + * 318665857834031151167461. With t<13 (abs(t)-13) additional + * tests with sequential small primes are run starting at 43. + * Is Fips 186.4 compliant if called with t as computed by + * mp_prime_rabin_miller_trials(); * * Sets result to 1 if probably prime, 0 otherwise */ -int mp_prime_is_prime(mp_int *a, int t, int *result); +int mp_prime_is_prime(const mp_int *a, int t, int *result); /* finds the next prime after the number "a" using "t" trials * of Miller-Rabin. @@ -524,26 +563,26 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style); int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat); /* ---> radix conversion <--- */ -int mp_count_bits(mp_int *a); +int mp_count_bits(const mp_int *a); -int mp_unsigned_bin_size(mp_int *a); +int mp_unsigned_bin_size(const mp_int *a); int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c); -int mp_to_unsigned_bin(mp_int *a, unsigned char *b); -int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen); +int mp_to_unsigned_bin(const mp_int *a, unsigned char *b); +int mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen); -int mp_signed_bin_size(mp_int *a); +int mp_signed_bin_size(const mp_int *a); int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c); -int mp_to_signed_bin(mp_int *a, unsigned char *b); -int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen); +int mp_to_signed_bin(const mp_int *a, unsigned char *b); +int mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen); int mp_read_radix(mp_int *a, const char *str, int radix); -int mp_toradix(mp_int *a, char *str, int radix); -int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen); -int mp_radix_size(mp_int *a, int radix, int *size); +int mp_toradix(const mp_int *a, char *str, int radix); +int mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen); +int mp_radix_size(const mp_int *a, int radix, int *size); #ifndef LTM_NO_FILE int mp_fread(mp_int *a, int radix, FILE *stream); -int mp_fwrite(mp_int *a, int radix, FILE *stream); +int mp_fwrite(const mp_int *a, int radix, FILE *stream); #endif #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len)) @@ -559,12 +598,12 @@ int mp_fwrite(mp_int *a, int radix, FILE *stream); #define mp_tohex(M, S) mp_toradix((M), (S), 16) #ifdef __cplusplus - } +} #endif #endif -/* ref: $Format:%D$ */ -/* git commit: $Format:%H$ */ -/* commit time: $Format:%ai$ */ +/* ref: HEAD -> master, tag: v1.1.0 */ +/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ +/* commit time: 2019-01-28 20:32:32 +0100 */ |