summaryrefslogtreecommitdiffhomepage
path: root/libtommath/bn_s_mp_invmod_fast.c
diff options
context:
space:
mode:
Diffstat (limited to 'libtommath/bn_s_mp_invmod_fast.c')
-rw-r--r--libtommath/bn_s_mp_invmod_fast.c118
1 files changed, 118 insertions, 0 deletions
diff --git a/libtommath/bn_s_mp_invmod_fast.c b/libtommath/bn_s_mp_invmod_fast.c
new file mode 100644
index 0000000..677d7ab
--- /dev/null
+++ b/libtommath/bn_s_mp_invmod_fast.c
@@ -0,0 +1,118 @@
+#include "tommath_private.h"
+#ifdef BN_S_MP_INVMOD_FAST_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis */
+/* SPDX-License-Identifier: Unlicense */
+
+/* computes the modular inverse via binary extended euclidean algorithm,
+ * that is c = 1/a mod b
+ *
+ * Based on slow invmod except this is optimized for the case where b is
+ * odd as per HAC Note 14.64 on pp. 610
+ */
+mp_err s_mp_invmod_fast(const mp_int *a, const mp_int *b, mp_int *c)
+{
+ mp_int x, y, u, v, B, D;
+ mp_sign neg;
+ mp_err err;
+
+ /* 2. [modified] b must be odd */
+ if (MP_IS_EVEN(b)) {
+ return MP_VAL;
+ }
+
+ /* init all our temps */
+ if ((err = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
+ return err;
+ }
+
+ /* x == modulus, y == value to invert */
+ if ((err = mp_copy(b, &x)) != MP_OKAY) goto LBL_ERR;
+
+ /* we need y = |a| */
+ if ((err = mp_mod(a, b, &y)) != MP_OKAY) goto LBL_ERR;
+
+ /* if one of x,y is zero return an error! */
+ if (MP_IS_ZERO(&x) || MP_IS_ZERO(&y)) {
+ err = MP_VAL;
+ goto LBL_ERR;
+ }
+
+ /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
+ if ((err = mp_copy(&x, &u)) != MP_OKAY) goto LBL_ERR;
+ if ((err = mp_copy(&y, &v)) != MP_OKAY) goto LBL_ERR;
+ mp_set(&D, 1uL);
+
+top:
+ /* 4. while u is even do */
+ while (MP_IS_EVEN(&u)) {
+ /* 4.1 u = u/2 */
+ if ((err = mp_div_2(&u, &u)) != MP_OKAY) goto LBL_ERR;
+
+ /* 4.2 if B is odd then */
+ if (MP_IS_ODD(&B)) {
+ if ((err = mp_sub(&B, &x, &B)) != MP_OKAY) goto LBL_ERR;
+ }
+ /* B = B/2 */
+ if ((err = mp_div_2(&B, &B)) != MP_OKAY) goto LBL_ERR;
+ }
+
+ /* 5. while v is even do */
+ while (MP_IS_EVEN(&v)) {
+ /* 5.1 v = v/2 */
+ if ((err = mp_div_2(&v, &v)) != MP_OKAY) goto LBL_ERR;
+
+ /* 5.2 if D is odd then */
+ if (MP_IS_ODD(&D)) {
+ /* D = (D-x)/2 */
+ if ((err = mp_sub(&D, &x, &D)) != MP_OKAY) goto LBL_ERR;
+ }
+ /* D = D/2 */
+ if ((err = mp_div_2(&D, &D)) != MP_OKAY) goto LBL_ERR;
+ }
+
+ /* 6. if u >= v then */
+ if (mp_cmp(&u, &v) != MP_LT) {
+ /* u = u - v, B = B - D */
+ if ((err = mp_sub(&u, &v, &u)) != MP_OKAY) goto LBL_ERR;
+
+ if ((err = mp_sub(&B, &D, &B)) != MP_OKAY) goto LBL_ERR;
+ } else {
+ /* v - v - u, D = D - B */
+ if ((err = mp_sub(&v, &u, &v)) != MP_OKAY) goto LBL_ERR;
+
+ if ((err = mp_sub(&D, &B, &D)) != MP_OKAY) goto LBL_ERR;
+ }
+
+ /* if not zero goto step 4 */
+ if (!MP_IS_ZERO(&u)) {
+ goto top;
+ }
+
+ /* now a = C, b = D, gcd == g*v */
+
+ /* if v != 1 then there is no inverse */
+ if (mp_cmp_d(&v, 1uL) != MP_EQ) {
+ err = MP_VAL;
+ goto LBL_ERR;
+ }
+
+ /* b is now the inverse */
+ neg = a->sign;
+ while (D.sign == MP_NEG) {
+ if ((err = mp_add(&D, b, &D)) != MP_OKAY) goto LBL_ERR;
+ }
+
+ /* too big */
+ while (mp_cmp_mag(&D, b) != MP_LT) {
+ if ((err = mp_sub(&D, b, &D)) != MP_OKAY) goto LBL_ERR;
+ }
+
+ mp_exch(&D, c);
+ c->sign = neg;
+ err = MP_OKAY;
+
+LBL_ERR:
+ mp_clear_multi(&x, &y, &u, &v, &B, &D, NULL);
+ return err;
+}
+#endif