diff options
Diffstat (limited to 'libtommath/bn_s_mp_invmod_fast.c')
-rw-r--r-- | libtommath/bn_s_mp_invmod_fast.c | 118 |
1 files changed, 118 insertions, 0 deletions
diff --git a/libtommath/bn_s_mp_invmod_fast.c b/libtommath/bn_s_mp_invmod_fast.c new file mode 100644 index 0000000..677d7ab --- /dev/null +++ b/libtommath/bn_s_mp_invmod_fast.c @@ -0,0 +1,118 @@ +#include "tommath_private.h" +#ifdef BN_S_MP_INVMOD_FAST_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +/* computes the modular inverse via binary extended euclidean algorithm, + * that is c = 1/a mod b + * + * Based on slow invmod except this is optimized for the case where b is + * odd as per HAC Note 14.64 on pp. 610 + */ +mp_err s_mp_invmod_fast(const mp_int *a, const mp_int *b, mp_int *c) +{ + mp_int x, y, u, v, B, D; + mp_sign neg; + mp_err err; + + /* 2. [modified] b must be odd */ + if (MP_IS_EVEN(b)) { + return MP_VAL; + } + + /* init all our temps */ + if ((err = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) { + return err; + } + + /* x == modulus, y == value to invert */ + if ((err = mp_copy(b, &x)) != MP_OKAY) goto LBL_ERR; + + /* we need y = |a| */ + if ((err = mp_mod(a, b, &y)) != MP_OKAY) goto LBL_ERR; + + /* if one of x,y is zero return an error! */ + if (MP_IS_ZERO(&x) || MP_IS_ZERO(&y)) { + err = MP_VAL; + goto LBL_ERR; + } + + /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ + if ((err = mp_copy(&x, &u)) != MP_OKAY) goto LBL_ERR; + if ((err = mp_copy(&y, &v)) != MP_OKAY) goto LBL_ERR; + mp_set(&D, 1uL); + +top: + /* 4. while u is even do */ + while (MP_IS_EVEN(&u)) { + /* 4.1 u = u/2 */ + if ((err = mp_div_2(&u, &u)) != MP_OKAY) goto LBL_ERR; + + /* 4.2 if B is odd then */ + if (MP_IS_ODD(&B)) { + if ((err = mp_sub(&B, &x, &B)) != MP_OKAY) goto LBL_ERR; + } + /* B = B/2 */ + if ((err = mp_div_2(&B, &B)) != MP_OKAY) goto LBL_ERR; + } + + /* 5. while v is even do */ + while (MP_IS_EVEN(&v)) { + /* 5.1 v = v/2 */ + if ((err = mp_div_2(&v, &v)) != MP_OKAY) goto LBL_ERR; + + /* 5.2 if D is odd then */ + if (MP_IS_ODD(&D)) { + /* D = (D-x)/2 */ + if ((err = mp_sub(&D, &x, &D)) != MP_OKAY) goto LBL_ERR; + } + /* D = D/2 */ + if ((err = mp_div_2(&D, &D)) != MP_OKAY) goto LBL_ERR; + } + + /* 6. if u >= v then */ + if (mp_cmp(&u, &v) != MP_LT) { + /* u = u - v, B = B - D */ + if ((err = mp_sub(&u, &v, &u)) != MP_OKAY) goto LBL_ERR; + + if ((err = mp_sub(&B, &D, &B)) != MP_OKAY) goto LBL_ERR; + } else { + /* v - v - u, D = D - B */ + if ((err = mp_sub(&v, &u, &v)) != MP_OKAY) goto LBL_ERR; + + if ((err = mp_sub(&D, &B, &D)) != MP_OKAY) goto LBL_ERR; + } + + /* if not zero goto step 4 */ + if (!MP_IS_ZERO(&u)) { + goto top; + } + + /* now a = C, b = D, gcd == g*v */ + + /* if v != 1 then there is no inverse */ + if (mp_cmp_d(&v, 1uL) != MP_EQ) { + err = MP_VAL; + goto LBL_ERR; + } + + /* b is now the inverse */ + neg = a->sign; + while (D.sign == MP_NEG) { + if ((err = mp_add(&D, b, &D)) != MP_OKAY) goto LBL_ERR; + } + + /* too big */ + while (mp_cmp_mag(&D, b) != MP_LT) { + if ((err = mp_sub(&D, b, &D)) != MP_OKAY) goto LBL_ERR; + } + + mp_exch(&D, c); + c->sign = neg; + err = MP_OKAY; + +LBL_ERR: + mp_clear_multi(&x, &y, &u, &v, &B, &D, NULL); + return err; +} +#endif |