diff options
Diffstat (limited to 'libtommath/bn_mp_sqrtmod_prime.c')
-rw-r--r-- | libtommath/bn_mp_sqrtmod_prime.c | 199 |
1 files changed, 103 insertions, 96 deletions
diff --git a/libtommath/bn_mp_sqrtmod_prime.c b/libtommath/bn_mp_sqrtmod_prime.c index 968729e..331ebd2 100644 --- a/libtommath/bn_mp_sqrtmod_prime.c +++ b/libtommath/bn_mp_sqrtmod_prime.c @@ -1,12 +1,15 @@ -#include <tommath_private.h> +#include "tommath_private.h" #ifdef BN_MP_SQRTMOD_PRIME_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * - * The library is free for all purposes without any express - * guarantee it works. + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * SPDX-License-Identifier: Unlicense */ /* Tonelli-Shanks algorithm @@ -15,110 +18,114 @@ * */ -int mp_sqrtmod_prime(mp_int *n, mp_int *prime, mp_int *ret) +int mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret) { - int res, legendre; - mp_int t1, C, Q, S, Z, M, T, R, two; - mp_digit i; + int res, legendre; + mp_int t1, C, Q, S, Z, M, T, R, two; + mp_digit i; - /* first handle the simple cases */ - if (mp_cmp_d(n, 0) == MP_EQ) { - mp_zero(ret); - return MP_OKAY; - } - if (mp_cmp_d(prime, 2) == MP_EQ) return MP_VAL; /* prime must be odd */ - if ((res = mp_jacobi(n, prime, &legendre)) != MP_OKAY) return res; - if (legendre == -1) return MP_VAL; /* quadratic non-residue mod prime */ + /* first handle the simple cases */ + if (mp_cmp_d(n, 0uL) == MP_EQ) { + mp_zero(ret); + return MP_OKAY; + } + if (mp_cmp_d(prime, 2uL) == MP_EQ) return MP_VAL; /* prime must be odd */ + if ((res = mp_jacobi(n, prime, &legendre)) != MP_OKAY) return res; + if (legendre == -1) return MP_VAL; /* quadratic non-residue mod prime */ - if ((res = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) { - return res; - } + if ((res = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) { + return res; + } - /* SPECIAL CASE: if prime mod 4 == 3 - * compute directly: res = n^(prime+1)/4 mod prime - * Handbook of Applied Cryptography algorithm 3.36 - */ - if ((res = mp_mod_d(prime, 4, &i)) != MP_OKAY) goto cleanup; - if (i == 3) { - if ((res = mp_add_d(prime, 1, &t1)) != MP_OKAY) goto cleanup; - if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; - if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; - if ((res = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY) goto cleanup; - res = MP_OKAY; - goto cleanup; - } + /* SPECIAL CASE: if prime mod 4 == 3 + * compute directly: res = n^(prime+1)/4 mod prime + * Handbook of Applied Cryptography algorithm 3.36 + */ + if ((res = mp_mod_d(prime, 4uL, &i)) != MP_OKAY) goto cleanup; + if (i == 3u) { + if ((res = mp_add_d(prime, 1uL, &t1)) != MP_OKAY) goto cleanup; + if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; + if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; + if ((res = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY) goto cleanup; + res = MP_OKAY; + goto cleanup; + } - /* NOW: Tonelli-Shanks algorithm */ + /* NOW: Tonelli-Shanks algorithm */ - /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */ - if ((res = mp_copy(prime, &Q)) != MP_OKAY) goto cleanup; - if ((res = mp_sub_d(&Q, 1, &Q)) != MP_OKAY) goto cleanup; - /* Q = prime - 1 */ - mp_zero(&S); - /* S = 0 */ - while (mp_iseven(&Q) != MP_NO) { - if ((res = mp_div_2(&Q, &Q)) != MP_OKAY) goto cleanup; - /* Q = Q / 2 */ - if ((res = mp_add_d(&S, 1, &S)) != MP_OKAY) goto cleanup; - /* S = S + 1 */ - } + /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */ + if ((res = mp_copy(prime, &Q)) != MP_OKAY) goto cleanup; + if ((res = mp_sub_d(&Q, 1uL, &Q)) != MP_OKAY) goto cleanup; + /* Q = prime - 1 */ + mp_zero(&S); + /* S = 0 */ + while (mp_iseven(&Q) != MP_NO) { + if ((res = mp_div_2(&Q, &Q)) != MP_OKAY) goto cleanup; + /* Q = Q / 2 */ + if ((res = mp_add_d(&S, 1uL, &S)) != MP_OKAY) goto cleanup; + /* S = S + 1 */ + } - /* find a Z such that the Legendre symbol (Z|prime) == -1 */ - if ((res = mp_set_int(&Z, 2)) != MP_OKAY) goto cleanup; - /* Z = 2 */ - while(1) { - if ((res = mp_jacobi(&Z, prime, &legendre)) != MP_OKAY) goto cleanup; - if (legendre == -1) break; - if ((res = mp_add_d(&Z, 1, &Z)) != MP_OKAY) goto cleanup; - /* Z = Z + 1 */ - } + /* find a Z such that the Legendre symbol (Z|prime) == -1 */ + if ((res = mp_set_int(&Z, 2uL)) != MP_OKAY) goto cleanup; + /* Z = 2 */ + while (1) { + if ((res = mp_jacobi(&Z, prime, &legendre)) != MP_OKAY) goto cleanup; + if (legendre == -1) break; + if ((res = mp_add_d(&Z, 1uL, &Z)) != MP_OKAY) goto cleanup; + /* Z = Z + 1 */ + } - if ((res = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY) goto cleanup; - /* C = Z ^ Q mod prime */ - if ((res = mp_add_d(&Q, 1, &t1)) != MP_OKAY) goto cleanup; - if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; - /* t1 = (Q + 1) / 2 */ - if ((res = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY) goto cleanup; - /* R = n ^ ((Q + 1) / 2) mod prime */ - if ((res = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY) goto cleanup; - /* T = n ^ Q mod prime */ - if ((res = mp_copy(&S, &M)) != MP_OKAY) goto cleanup; - /* M = S */ - if ((res = mp_set_int(&two, 2)) != MP_OKAY) goto cleanup; + if ((res = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY) goto cleanup; + /* C = Z ^ Q mod prime */ + if ((res = mp_add_d(&Q, 1uL, &t1)) != MP_OKAY) goto cleanup; + if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; + /* t1 = (Q + 1) / 2 */ + if ((res = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY) goto cleanup; + /* R = n ^ ((Q + 1) / 2) mod prime */ + if ((res = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY) goto cleanup; + /* T = n ^ Q mod prime */ + if ((res = mp_copy(&S, &M)) != MP_OKAY) goto cleanup; + /* M = S */ + if ((res = mp_set_int(&two, 2uL)) != MP_OKAY) goto cleanup; - res = MP_VAL; - while (1) { - if ((res = mp_copy(&T, &t1)) != MP_OKAY) goto cleanup; - i = 0; - while (1) { - if (mp_cmp_d(&t1, 1) == MP_EQ) break; - if ((res = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup; - i++; - } - if (i == 0) { - if ((res = mp_copy(&R, ret)) != MP_OKAY) goto cleanup; - res = MP_OKAY; - goto cleanup; - } - if ((res = mp_sub_d(&M, i, &t1)) != MP_OKAY) goto cleanup; - if ((res = mp_sub_d(&t1, 1, &t1)) != MP_OKAY) goto cleanup; - if ((res = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY) goto cleanup; - /* t1 = 2 ^ (M - i - 1) */ - if ((res = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY) goto cleanup; - /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */ - if ((res = mp_sqrmod(&t1, prime, &C)) != MP_OKAY) goto cleanup; - /* C = (t1 * t1) mod prime */ - if ((res = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY) goto cleanup; - /* R = (R * t1) mod prime */ - if ((res = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY) goto cleanup; - /* T = (T * C) mod prime */ - mp_set(&M, i); - /* M = i */ - } + res = MP_VAL; + while (1) { + if ((res = mp_copy(&T, &t1)) != MP_OKAY) goto cleanup; + i = 0; + while (1) { + if (mp_cmp_d(&t1, 1uL) == MP_EQ) break; + if ((res = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup; + i++; + } + if (i == 0u) { + if ((res = mp_copy(&R, ret)) != MP_OKAY) goto cleanup; + res = MP_OKAY; + goto cleanup; + } + if ((res = mp_sub_d(&M, i, &t1)) != MP_OKAY) goto cleanup; + if ((res = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) goto cleanup; + if ((res = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY) goto cleanup; + /* t1 = 2 ^ (M - i - 1) */ + if ((res = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY) goto cleanup; + /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */ + if ((res = mp_sqrmod(&t1, prime, &C)) != MP_OKAY) goto cleanup; + /* C = (t1 * t1) mod prime */ + if ((res = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY) goto cleanup; + /* R = (R * t1) mod prime */ + if ((res = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY) goto cleanup; + /* T = (T * C) mod prime */ + mp_set(&M, i); + /* M = i */ + } cleanup: - mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL); - return res; + mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL); + return res; } #endif + +/* ref: HEAD -> master, tag: v1.1.0 */ +/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ +/* commit time: 2019-01-28 20:32:32 +0100 */ |