summaryrefslogtreecommitdiffhomepage
path: root/libtomcrypt/testprof/x86_prof.c
diff options
context:
space:
mode:
Diffstat (limited to 'libtomcrypt/testprof/x86_prof.c')
-rw-r--r--libtomcrypt/testprof/x86_prof.c1436
1 files changed, 1436 insertions, 0 deletions
diff --git a/libtomcrypt/testprof/x86_prof.c b/libtomcrypt/testprof/x86_prof.c
new file mode 100644
index 0000000..96667a2
--- /dev/null
+++ b/libtomcrypt/testprof/x86_prof.c
@@ -0,0 +1,1436 @@
+#include <tomcrypt_test.h>
+
+prng_state yarrow_prng;
+
+struct list results[100];
+int no_results;
+int sorter(const void *a, const void *b)
+{
+ const struct list *A, *B;
+ A = a;
+ B = b;
+ if (A->avg < B->avg) return -1;
+ if (A->avg > B->avg) return 1;
+ return 0;
+}
+
+void tally_results(int type)
+{
+ int x;
+
+ /* qsort the results */
+ qsort(results, no_results, sizeof(struct list), &sorter);
+
+ fprintf(stderr, "\n");
+ if (type == 0) {
+ for (x = 0; x < no_results; x++) {
+ fprintf(stderr, "%-20s: Schedule at %6lu\n", cipher_descriptor[results[x].id].name, (unsigned long)results[x].spd1);
+ }
+ } else if (type == 1) {
+ for (x = 0; x < no_results; x++) {
+ printf
+ ("%-20s[%3d]: Encrypt at %5lu, Decrypt at %5lu\n", cipher_descriptor[results[x].id].name, cipher_descriptor[results[x].id].ID, results[x].spd1, results[x].spd2);
+ }
+ } else {
+ for (x = 0; x < no_results; x++) {
+ printf
+ ("%-20s: Process at %5lu\n", hash_descriptor[results[x].id].name, results[x].spd1 / 1000);
+ }
+ }
+}
+
+/* RDTSC from Scott Duplichan */
+ulong64 rdtsc (void)
+ {
+ #if defined __GNUC__ && !defined(LTC_NO_ASM)
+ #ifdef INTEL_CC
+ ulong64 a;
+ asm ( " rdtsc ":"=A"(a));
+ return a;
+ #elif defined(__i386__) || defined(__x86_64__)
+ ulong64 a;
+ asm __volatile__ ("rdtsc\nmovl %%eax,(%0)\nmovl %%edx,4(%0)\n"::"r"(&a):"%eax","%edx");
+ return a;
+ #elif defined(LTC_PPC32) || defined(TFM_PPC32)
+ unsigned long a, b;
+ __asm__ __volatile__ ("mftbu %1 \nmftb %0\n":"=r"(a), "=r"(b));
+ return (((ulong64)b) << 32ULL) | ((ulong64)a);
+ #elif defined(__ia64__) /* gcc-IA64 version */
+ unsigned long result;
+ __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
+ while (__builtin_expect ((int) result == -1, 0))
+ __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
+ return result;
+ #elif defined(__sparc__)
+ #if defined(__arch64__)
+ ulong64 a;
+ asm volatile("rd %%tick,%0" : "=r" (a));
+ return a;
+ #else
+ register unsigned long x, y;
+ __asm__ __volatile__ ("rd %%tick, %0; clruw %0, %1; srlx %0, 32, %0" : "=r" (x), "=r" (y) : "0" (x), "1" (y));
+ return ((unsigned long long) x << 32) | y;
+ #endif
+ #else
+ return XCLOCK();
+ #endif
+
+ /* Microsoft and Intel Windows compilers */
+ #elif defined _M_IX86 && !defined(LTC_NO_ASM)
+ __asm rdtsc
+ #elif defined _M_AMD64 && !defined(LTC_NO_ASM)
+ return __rdtsc ();
+ #elif defined _M_IA64 && !defined(LTC_NO_ASM)
+ #if defined __INTEL_COMPILER
+ #include <ia64intrin.h>
+ #endif
+ return __getReg (3116);
+ #else
+ return XCLOCK();
+ #endif
+ }
+
+static ulong64 timer, skew = 0;
+
+void t_start(void)
+{
+ timer = rdtsc();
+}
+
+ulong64 t_read(void)
+{
+ return rdtsc() - timer;
+}
+
+void init_timer(void)
+{
+ ulong64 c1, c2, t1, t2, t3;
+ unsigned long y1;
+
+ c1 = c2 = (ulong64)-1;
+ for (y1 = 0; y1 < TIMES*100; y1++) {
+ t_start();
+ t1 = t_read();
+ t3 = t_read();
+ t2 = (t_read() - t1)>>1;
+
+ c1 = (t1 > c1) ? t1 : c1;
+ c2 = (t2 > c2) ? t2 : c2;
+ }
+ skew = c2 - c1;
+ fprintf(stderr, "Clock Skew: %lu\n", (unsigned long)skew);
+}
+
+void reg_algs(void)
+{
+ int err;
+#ifdef RIJNDAEL
+ register_cipher (&aes_desc);
+#endif
+#ifdef BLOWFISH
+ register_cipher (&blowfish_desc);
+#endif
+#ifdef XTEA
+ register_cipher (&xtea_desc);
+#endif
+#ifdef RC5
+ register_cipher (&rc5_desc);
+#endif
+#ifdef RC6
+ register_cipher (&rc6_desc);
+#endif
+#ifdef SAFERP
+ register_cipher (&saferp_desc);
+#endif
+#ifdef TWOFISH
+ register_cipher (&twofish_desc);
+#endif
+#ifdef SAFER
+ register_cipher (&safer_k64_desc);
+ register_cipher (&safer_sk64_desc);
+ register_cipher (&safer_k128_desc);
+ register_cipher (&safer_sk128_desc);
+#endif
+#ifdef RC2
+ register_cipher (&rc2_desc);
+#endif
+#ifdef DES
+ register_cipher (&des_desc);
+ register_cipher (&des3_desc);
+#endif
+#ifdef CAST5
+ register_cipher (&cast5_desc);
+#endif
+#ifdef NOEKEON
+ register_cipher (&noekeon_desc);
+#endif
+#ifdef SKIPJACK
+ register_cipher (&skipjack_desc);
+#endif
+#ifdef KHAZAD
+ register_cipher (&khazad_desc);
+#endif
+#ifdef ANUBIS
+ register_cipher (&anubis_desc);
+#endif
+#ifdef KSEED
+ register_cipher (&kseed_desc);
+#endif
+#ifdef LTC_KASUMI
+ register_cipher (&kasumi_desc);
+#endif
+
+#ifdef TIGER
+ register_hash (&tiger_desc);
+#endif
+#ifdef MD2
+ register_hash (&md2_desc);
+#endif
+#ifdef MD4
+ register_hash (&md4_desc);
+#endif
+#ifdef MD5
+ register_hash (&md5_desc);
+#endif
+#ifdef SHA1
+ register_hash (&sha1_desc);
+#endif
+#ifdef SHA224
+ register_hash (&sha224_desc);
+#endif
+#ifdef SHA256
+ register_hash (&sha256_desc);
+#endif
+#ifdef SHA384
+ register_hash (&sha384_desc);
+#endif
+#ifdef SHA512
+ register_hash (&sha512_desc);
+#endif
+#ifdef RIPEMD128
+ register_hash (&rmd128_desc);
+#endif
+#ifdef RIPEMD160
+ register_hash (&rmd160_desc);
+#endif
+#ifdef RIPEMD256
+ register_hash (&rmd256_desc);
+#endif
+#ifdef RIPEMD320
+ register_hash (&rmd320_desc);
+#endif
+#ifdef WHIRLPOOL
+ register_hash (&whirlpool_desc);
+#endif
+#ifdef CHC_HASH
+ register_hash(&chc_desc);
+ if ((err = chc_register(register_cipher(&aes_desc))) != CRYPT_OK) {
+ fprintf(stderr, "chc_register error: %s\n", error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+#endif
+
+
+#ifndef YARROW
+ #error This demo requires Yarrow.
+#endif
+register_prng(&yarrow_desc);
+#ifdef FORTUNA
+register_prng(&fortuna_desc);
+#endif
+#ifdef RC4
+register_prng(&rc4_desc);
+#endif
+#ifdef SOBER128
+register_prng(&sober128_desc);
+#endif
+
+ if ((err = rng_make_prng(128, find_prng("yarrow"), &yarrow_prng, NULL)) != CRYPT_OK) {
+ fprintf(stderr, "rng_make_prng failed: %s\n", error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+
+}
+
+int time_keysched(void)
+{
+ unsigned long x, y1;
+ ulong64 t1, c1;
+ symmetric_key skey;
+ int kl;
+ int (*func) (const unsigned char *, int , int , symmetric_key *);
+ unsigned char key[MAXBLOCKSIZE];
+
+ fprintf(stderr, "\n\nKey Schedule Time Trials for the Symmetric Ciphers:\n(Times are cycles per key)\n");
+ no_results = 0;
+ for (x = 0; cipher_descriptor[x].name != NULL; x++) {
+#define DO1(k) func(k, kl, 0, &skey);
+
+ func = cipher_descriptor[x].setup;
+ kl = cipher_descriptor[x].min_key_length;
+ c1 = (ulong64)-1;
+ for (y1 = 0; y1 < KTIMES; y1++) {
+ yarrow_read(key, kl, &yarrow_prng);
+ t_start();
+ DO1(key);
+ t1 = t_read();
+ c1 = (t1 > c1) ? c1 : t1;
+ }
+ t1 = c1 - skew;
+ results[no_results].spd1 = results[no_results].avg = t1;
+ results[no_results++].id = x;
+ fprintf(stderr, "."); fflush(stdout);
+
+#undef DO1
+ }
+ tally_results(0);
+
+ return 0;
+}
+
+int time_cipher(void)
+{
+ unsigned long x, y1;
+ ulong64 t1, t2, c1, c2, a1, a2;
+ symmetric_ECB ecb;
+ unsigned char key[MAXBLOCKSIZE], pt[4096];
+ int err;
+
+ fprintf(stderr, "\n\nECB Time Trials for the Symmetric Ciphers:\n");
+ no_results = 0;
+ for (x = 0; cipher_descriptor[x].name != NULL; x++) {
+ ecb_start(x, key, cipher_descriptor[x].min_key_length, 0, &ecb);
+
+ /* sanity check on cipher */
+ if ((err = cipher_descriptor[x].test()) != CRYPT_OK) {
+ fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+
+#define DO1 ecb_encrypt(pt, pt, sizeof(pt), &ecb);
+#define DO2 DO1 DO1
+
+ c1 = c2 = (ulong64)-1;
+ for (y1 = 0; y1 < 100; y1++) {
+ t_start();
+ DO1;
+ t1 = t_read();
+ DO2;
+ t2 = t_read();
+ t2 -= t1;
+
+ c1 = (t1 > c1 ? c1 : t1);
+ c2 = (t2 > c2 ? c2 : t2);
+ }
+ a1 = c2 - c1 - skew;
+
+#undef DO1
+#undef DO2
+#define DO1 ecb_decrypt(pt, pt, sizeof(pt), &ecb);
+#define DO2 DO1 DO1
+
+ c1 = c2 = (ulong64)-1;
+ for (y1 = 0; y1 < 100; y1++) {
+ t_start();
+ DO1;
+ t1 = t_read();
+ DO2;
+ t2 = t_read();
+ t2 -= t1;
+
+ c1 = (t1 > c1 ? c1 : t1);
+ c2 = (t2 > c2 ? c2 : t2);
+ }
+ a2 = c2 - c1 - skew;
+ ecb_done(&ecb);
+
+ results[no_results].id = x;
+ results[no_results].spd1 = a1/(sizeof(pt)/cipher_descriptor[x].block_length);
+ results[no_results].spd2 = a2/(sizeof(pt)/cipher_descriptor[x].block_length);
+ results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2;
+ ++no_results;
+ fprintf(stderr, "."); fflush(stdout);
+
+#undef DO2
+#undef DO1
+ }
+ tally_results(1);
+
+ return 0;
+}
+
+#ifdef LTC_CBC_MODE
+int time_cipher2(void)
+{
+ unsigned long x, y1;
+ ulong64 t1, t2, c1, c2, a1, a2;
+ symmetric_CBC cbc;
+ unsigned char key[MAXBLOCKSIZE], pt[4096];
+ int err;
+
+ fprintf(stderr, "\n\nCBC Time Trials for the Symmetric Ciphers:\n");
+ no_results = 0;
+ for (x = 0; cipher_descriptor[x].name != NULL; x++) {
+ cbc_start(x, pt, key, cipher_descriptor[x].min_key_length, 0, &cbc);
+
+ /* sanity check on cipher */
+ if ((err = cipher_descriptor[x].test()) != CRYPT_OK) {
+ fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+
+#define DO1 cbc_encrypt(pt, pt, sizeof(pt), &cbc);
+#define DO2 DO1 DO1
+
+ c1 = c2 = (ulong64)-1;
+ for (y1 = 0; y1 < 100; y1++) {
+ t_start();
+ DO1;
+ t1 = t_read();
+ DO2;
+ t2 = t_read();
+ t2 -= t1;
+
+ c1 = (t1 > c1 ? c1 : t1);
+ c2 = (t2 > c2 ? c2 : t2);
+ }
+ a1 = c2 - c1 - skew;
+
+#undef DO1
+#undef DO2
+#define DO1 cbc_decrypt(pt, pt, sizeof(pt), &cbc);
+#define DO2 DO1 DO1
+
+ c1 = c2 = (ulong64)-1;
+ for (y1 = 0; y1 < 100; y1++) {
+ t_start();
+ DO1;
+ t1 = t_read();
+ DO2;
+ t2 = t_read();
+ t2 -= t1;
+
+ c1 = (t1 > c1 ? c1 : t1);
+ c2 = (t2 > c2 ? c2 : t2);
+ }
+ a2 = c2 - c1 - skew;
+ cbc_done(&cbc);
+
+ results[no_results].id = x;
+ results[no_results].spd1 = a1/(sizeof(pt)/cipher_descriptor[x].block_length);
+ results[no_results].spd2 = a2/(sizeof(pt)/cipher_descriptor[x].block_length);
+ results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2;
+ ++no_results;
+ fprintf(stderr, "."); fflush(stdout);
+
+#undef DO2
+#undef DO1
+ }
+ tally_results(1);
+
+ return 0;
+}
+#else
+int time_cipher2(void) { fprintf(stderr, "NO CBC\n"); return 0; }
+#endif
+
+#ifdef LTC_CTR_MODE
+int time_cipher3(void)
+{
+ unsigned long x, y1;
+ ulong64 t1, t2, c1, c2, a1, a2;
+ symmetric_CTR ctr;
+ unsigned char key[MAXBLOCKSIZE], pt[4096];
+ int err;
+
+ fprintf(stderr, "\n\nCTR Time Trials for the Symmetric Ciphers:\n");
+ no_results = 0;
+ for (x = 0; cipher_descriptor[x].name != NULL; x++) {
+ ctr_start(x, pt, key, cipher_descriptor[x].min_key_length, 0, CTR_COUNTER_LITTLE_ENDIAN, &ctr);
+
+ /* sanity check on cipher */
+ if ((err = cipher_descriptor[x].test()) != CRYPT_OK) {
+ fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+
+#define DO1 ctr_encrypt(pt, pt, sizeof(pt), &ctr);
+#define DO2 DO1 DO1
+
+ c1 = c2 = (ulong64)-1;
+ for (y1 = 0; y1 < 100; y1++) {
+ t_start();
+ DO1;
+ t1 = t_read();
+ DO2;
+ t2 = t_read();
+ t2 -= t1;
+
+ c1 = (t1 > c1 ? c1 : t1);
+ c2 = (t2 > c2 ? c2 : t2);
+ }
+ a1 = c2 - c1 - skew;
+
+#undef DO1
+#undef DO2
+#define DO1 ctr_decrypt(pt, pt, sizeof(pt), &ctr);
+#define DO2 DO1 DO1
+
+ c1 = c2 = (ulong64)-1;
+ for (y1 = 0; y1 < 100; y1++) {
+ t_start();
+ DO1;
+ t1 = t_read();
+ DO2;
+ t2 = t_read();
+ t2 -= t1;
+
+ c1 = (t1 > c1 ? c1 : t1);
+ c2 = (t2 > c2 ? c2 : t2);
+ }
+ a2 = c2 - c1 - skew;
+ ctr_done(&ctr);
+
+ results[no_results].id = x;
+ results[no_results].spd1 = a1/(sizeof(pt)/cipher_descriptor[x].block_length);
+ results[no_results].spd2 = a2/(sizeof(pt)/cipher_descriptor[x].block_length);
+ results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2;
+ ++no_results;
+ fprintf(stderr, "."); fflush(stdout);
+
+#undef DO2
+#undef DO1
+ }
+ tally_results(1);
+
+ return 0;
+}
+#else
+int time_cipher3(void) { fprintf(stderr, "NO CTR\n"); return 0; }
+#endif
+
+#ifdef LTC_LRW_MODE
+int time_cipher4(void)
+{
+ unsigned long x, y1;
+ ulong64 t1, t2, c1, c2, a1, a2;
+ symmetric_LRW lrw;
+ unsigned char key[MAXBLOCKSIZE], pt[4096];
+ int err;
+
+ fprintf(stderr, "\n\nLRW Time Trials for the Symmetric Ciphers:\n");
+ no_results = 0;
+ for (x = 0; cipher_descriptor[x].name != NULL; x++) {
+ if (cipher_descriptor[x].block_length != 16) continue;
+ lrw_start(x, pt, key, cipher_descriptor[x].min_key_length, key, 0, &lrw);
+
+ /* sanity check on cipher */
+ if ((err = cipher_descriptor[x].test()) != CRYPT_OK) {
+ fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+
+#define DO1 lrw_encrypt(pt, pt, sizeof(pt), &lrw);
+#define DO2 DO1 DO1
+
+ c1 = c2 = (ulong64)-1;
+ for (y1 = 0; y1 < 100; y1++) {
+ t_start();
+ DO1;
+ t1 = t_read();
+ DO2;
+ t2 = t_read();
+ t2 -= t1;
+
+ c1 = (t1 > c1 ? c1 : t1);
+ c2 = (t2 > c2 ? c2 : t2);
+ }
+ a1 = c2 - c1 - skew;
+
+#undef DO1
+#undef DO2
+#define DO1 lrw_decrypt(pt, pt, sizeof(pt), &lrw);
+#define DO2 DO1 DO1
+
+ c1 = c2 = (ulong64)-1;
+ for (y1 = 0; y1 < 100; y1++) {
+ t_start();
+ DO1;
+ t1 = t_read();
+ DO2;
+ t2 = t_read();
+ t2 -= t1;
+
+ c1 = (t1 > c1 ? c1 : t1);
+ c2 = (t2 > c2 ? c2 : t2);
+ }
+ a2 = c2 - c1 - skew;
+
+ lrw_done(&lrw);
+
+ results[no_results].id = x;
+ results[no_results].spd1 = a1/(sizeof(pt)/cipher_descriptor[x].block_length);
+ results[no_results].spd2 = a2/(sizeof(pt)/cipher_descriptor[x].block_length);
+ results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2;
+ ++no_results;
+ fprintf(stderr, "."); fflush(stdout);
+
+#undef DO2
+#undef DO1
+ }
+ tally_results(1);
+
+ return 0;
+}
+#else
+int time_cipher4(void) { fprintf(stderr, "NO LRW\n"); return 0; }
+#endif
+
+
+int time_hash(void)
+{
+ unsigned long x, y1, len;
+ ulong64 t1, t2, c1, c2;
+ hash_state md;
+ int (*func)(hash_state *, const unsigned char *, unsigned long), err;
+ unsigned char pt[MAXBLOCKSIZE];
+
+
+ fprintf(stderr, "\n\nHASH Time Trials for:\n");
+ no_results = 0;
+ for (x = 0; hash_descriptor[x].name != NULL; x++) {
+
+ /* sanity check on hash */
+ if ((err = hash_descriptor[x].test()) != CRYPT_OK) {
+ fprintf(stderr, "\n\nERROR: Hash %s failed self-test %s\n", hash_descriptor[x].name, error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+
+ hash_descriptor[x].init(&md);
+
+#define DO1 func(&md,pt,len);
+#define DO2 DO1 DO1
+
+ func = hash_descriptor[x].process;
+ len = hash_descriptor[x].blocksize;
+
+ c1 = c2 = (ulong64)-1;
+ for (y1 = 0; y1 < TIMES; y1++) {
+ t_start();
+ DO1;
+ t1 = t_read();
+ DO2;
+ t2 = t_read() - t1;
+ c1 = (t1 > c1) ? c1 : t1;
+ c2 = (t2 > c2) ? c2 : t2;
+ }
+ t1 = c2 - c1 - skew;
+ t1 = ((t1 * CONST64(1000))) / ((ulong64)hash_descriptor[x].blocksize);
+ results[no_results].id = x;
+ results[no_results].spd1 = results[no_results].avg = t1;
+ ++no_results;
+ fprintf(stderr, "."); fflush(stdout);
+#undef DO2
+#undef DO1
+ }
+ tally_results(2);
+
+ return 0;
+}
+
+#undef MPI
+/*#warning you need an mp_rand!!!*/
+
+#ifdef MPI
+void time_mult(void)
+{
+ ulong64 t1, t2;
+ unsigned long x, y;
+ void *a, *b, *c;
+
+ fprintf(stderr, "Timing Multiplying:\n");
+ mp_init_multi(&a,&b,&c,NULL);
+ for (x = 128/DIGIT_BIT; x <= 1536/DIGIT_BIT; x += 128/DIGIT_BIT) {
+ mp_rand(&a, x);
+ mp_rand(&b, x);
+
+#define DO1 mp_mul(&a, &b, &c);
+#define DO2 DO1; DO1;
+
+ t2 = -1;
+ for (y = 0; y < TIMES; y++) {
+ t_start();
+ t1 = t_read();
+ DO2;
+ t1 = (t_read() - t1)>>1;
+ if (t1 < t2) t2 = t1;
+ }
+ fprintf(stderr, "%4lu bits: %9llu cycles\n", x*DIGIT_BIT, t2);
+ }
+ mp_clear_multi(&a,&b,&c,NULL);
+
+#undef DO1
+#undef DO2
+}
+
+void time_sqr(void)
+{
+ ulong64 t1, t2;
+ unsigned long x, y;
+ mp_int a, b;
+
+ fprintf(stderr, "Timing Squaring:\n");
+ mp_init_multi(&a,&b,NULL);
+ for (x = 128/DIGIT_BIT; x <= 1536/DIGIT_BIT; x += 128/DIGIT_BIT) {
+ mp_rand(&a, x);
+
+#define DO1 mp_sqr(&a, &b);
+#define DO2 DO1; DO1;
+
+ t2 = -1;
+ for (y = 0; y < TIMES; y++) {
+ t_start();
+ t1 = t_read();
+ DO2;
+ t1 = (t_read() - t1)>>1;
+ if (t1 < t2) t2 = t1;
+ }
+ fprintf(stderr, "%4lu bits: %9llu cycles\n", x*DIGIT_BIT, t2);
+ }
+ mp_clear_multi(&a,&b,NULL);
+
+#undef DO1
+#undef DO2
+}
+#else
+void time_mult(void) { fprintf(stderr, "NO MULT\n"); }
+void time_sqr(void) { fprintf(stderr, "NO SQR\n"); }
+#endif
+
+void time_prng(void)
+{
+ ulong64 t1, t2;
+ unsigned char buf[4096];
+ prng_state tprng;
+ unsigned long x, y;
+ int err;
+
+ fprintf(stderr, "Timing PRNGs (cycles/byte output, cycles add_entropy (32 bytes) :\n");
+ for (x = 0; prng_descriptor[x].name != NULL; x++) {
+
+ /* sanity check on prng */
+ if ((err = prng_descriptor[x].test()) != CRYPT_OK) {
+ fprintf(stderr, "\n\nERROR: PRNG %s failed self-test %s\n", prng_descriptor[x].name, error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+
+ prng_descriptor[x].start(&tprng);
+ zeromem(buf, 256);
+ prng_descriptor[x].add_entropy(buf, 256, &tprng);
+ prng_descriptor[x].ready(&tprng);
+ t2 = -1;
+
+#define DO1 if (prng_descriptor[x].read(buf, 4096, &tprng) != 4096) { fprintf(stderr, "\n\nERROR READ != 4096\n\n"); exit(EXIT_FAILURE); }
+#define DO2 DO1 DO1
+ for (y = 0; y < 10000; y++) {
+ t_start();
+ t1 = t_read();
+ DO2;
+ t1 = (t_read() - t1)>>1;
+ if (t1 < t2) t2 = t1;
+ }
+ fprintf(stderr, "%20s: %5llu ", prng_descriptor[x].name, t2>>12);
+#undef DO2
+#undef DO1
+
+#define DO1 prng_descriptor[x].start(&tprng); prng_descriptor[x].add_entropy(buf, 32, &tprng); prng_descriptor[x].ready(&tprng); prng_descriptor[x].done(&tprng);
+#define DO2 DO1 DO1
+ for (y = 0; y < 10000; y++) {
+ t_start();
+ t1 = t_read();
+ DO2;
+ t1 = (t_read() - t1)>>1;
+ if (t1 < t2) t2 = t1;
+ }
+ fprintf(stderr, "%5llu\n", t2);
+#undef DO2
+#undef DO1
+
+ }
+}
+
+#ifdef MDSA
+/* time various DSA operations */
+void time_dsa(void)
+{
+ dsa_key key;
+ ulong64 t1, t2;
+ unsigned long x, y;
+ int err;
+static const struct {
+ int group, modulus;
+} groups[] = {
+{ 20, 96 },
+{ 20, 128 },
+{ 24, 192 },
+{ 28, 256 },
+{ 32, 512 }
+};
+
+ for (x = 0; x < (sizeof(groups)/sizeof(groups[0])); x++) {
+ t2 = 0;
+ for (y = 0; y < 4; y++) {
+ t_start();
+ t1 = t_read();
+ if ((err = dsa_make_key(&yarrow_prng, find_prng("yarrow"), groups[x].group, groups[x].modulus, &key)) != CRYPT_OK) {
+ fprintf(stderr, "\n\ndsa_make_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ t2 += t1;
+
+#ifdef LTC_PROFILE
+ t2 <<= 2;
+ break;
+#endif
+ if (y < 3) {
+ dsa_free(&key);
+ }
+ }
+ t2 >>= 2;
+ fprintf(stderr, "DSA-(%lu, %lu) make_key took %15llu cycles\n", (unsigned long)groups[x].group*8, (unsigned long)groups[x].modulus*8, t2);
+ }
+}
+#endif
+
+
+#ifdef MRSA
+/* time various RSA operations */
+void time_rsa(void)
+{
+ rsa_key key;
+ ulong64 t1, t2;
+ unsigned char buf[2][2048];
+ unsigned long x, y, z, zzz;
+ int err, zz, stat;
+
+ for (x = 1024; x <= 2048; x += 256) {
+ t2 = 0;
+ for (y = 0; y < 4; y++) {
+ t_start();
+ t1 = t_read();
+ if ((err = rsa_make_key(&yarrow_prng, find_prng("yarrow"), x/8, 65537, &key)) != CRYPT_OK) {
+ fprintf(stderr, "\n\nrsa_make_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ t2 += t1;
+
+#ifdef LTC_PROFILE
+ t2 <<= 2;
+ break;
+#endif
+
+ if (y < 3) {
+ rsa_free(&key);
+ }
+ }
+ t2 >>= 2;
+ fprintf(stderr, "RSA-%lu make_key took %15llu cycles\n", x, t2);
+
+ t2 = 0;
+ for (y = 0; y < 16; y++) {
+ t_start();
+ t1 = t_read();
+ z = sizeof(buf[1]);
+ if ((err = rsa_encrypt_key(buf[0], 32, buf[1], &z, (const unsigned char *)"testprog", 8, &yarrow_prng,
+ find_prng("yarrow"), find_hash("sha1"),
+ &key)) != CRYPT_OK) {
+ fprintf(stderr, "\n\nrsa_encrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ t2 += t1;
+#ifdef LTC_PROFILE
+ t2 <<= 4;
+ break;
+#endif
+ }
+ t2 >>= 4;
+ fprintf(stderr, "RSA-%lu encrypt_key took %15llu cycles\n", x, t2);
+
+ t2 = 0;
+ for (y = 0; y < 2048; y++) {
+ t_start();
+ t1 = t_read();
+ zzz = sizeof(buf[0]);
+ if ((err = rsa_decrypt_key(buf[1], z, buf[0], &zzz, (const unsigned char *)"testprog", 8, find_hash("sha1"),
+ &zz, &key)) != CRYPT_OK) {
+ fprintf(stderr, "\n\nrsa_decrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ t2 += t1;
+#ifdef LTC_PROFILE
+ t2 <<= 11;
+ break;
+#endif
+ }
+ t2 >>= 11;
+ fprintf(stderr, "RSA-%lu decrypt_key took %15llu cycles\n", x, t2);
+
+ t2 = 0;
+ for (y = 0; y < 256; y++) {
+ t_start();
+ t1 = t_read();
+ z = sizeof(buf[1]);
+ if ((err = rsa_sign_hash(buf[0], 20, buf[1], &z, &yarrow_prng,
+ find_prng("yarrow"), find_hash("sha1"), 8, &key)) != CRYPT_OK) {
+ fprintf(stderr, "\n\nrsa_sign_hash says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ t2 += t1;
+#ifdef LTC_PROFILE
+ t2 <<= 8;
+ break;
+#endif
+ }
+ t2 >>= 8;
+ fprintf(stderr, "RSA-%lu sign_hash took %15llu cycles\n", x, t2);
+
+ t2 = 0;
+ for (y = 0; y < 2048; y++) {
+ t_start();
+ t1 = t_read();
+ if ((err = rsa_verify_hash(buf[1], z, buf[0], 20, find_hash("sha1"), 8, &stat, &key)) != CRYPT_OK) {
+ fprintf(stderr, "\n\nrsa_verify_hash says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
+ exit(EXIT_FAILURE);
+ }
+ if (stat == 0) {
+ fprintf(stderr, "\n\nrsa_verify_hash for RSA-%lu failed to verify signature(%lu)\n", x, y);
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ t2 += t1;
+#ifdef LTC_PROFILE
+ t2 <<= 11;
+ break;
+#endif
+ }
+ t2 >>= 11;
+ fprintf(stderr, "RSA-%lu verify_hash took %15llu cycles\n", x, t2);
+ fprintf(stderr, "\n\n");
+ rsa_free(&key);
+ }
+}
+#else
+void time_rsa(void) { fprintf(stderr, "NO RSA\n"); }
+#endif
+
+#ifdef MKAT
+/* time various KAT operations */
+void time_katja(void)
+{
+ katja_key key;
+ ulong64 t1, t2;
+ unsigned char buf[2][4096];
+ unsigned long x, y, z, zzz;
+ int err, zz;
+
+ for (x = 1024; x <= 2048; x += 256) {
+ t2 = 0;
+ for (y = 0; y < 4; y++) {
+ t_start();
+ t1 = t_read();
+ if ((err = katja_make_key(&yarrow_prng, find_prng("yarrow"), x/8, &key)) != CRYPT_OK) {
+ fprintf(stderr, "\n\nkatja_make_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ t2 += t1;
+
+ if (y < 3) {
+ katja_free(&key);
+ }
+ }
+ t2 >>= 2;
+ fprintf(stderr, "Katja-%lu make_key took %15llu cycles\n", x, t2);
+
+ t2 = 0;
+ for (y = 0; y < 16; y++) {
+ t_start();
+ t1 = t_read();
+ z = sizeof(buf[1]);
+ if ((err = katja_encrypt_key(buf[0], 32, buf[1], &z, "testprog", 8, &yarrow_prng,
+ find_prng("yarrow"), find_hash("sha1"),
+ &key)) != CRYPT_OK) {
+ fprintf(stderr, "\n\nkatja_encrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ t2 += t1;
+ }
+ t2 >>= 4;
+ fprintf(stderr, "Katja-%lu encrypt_key took %15llu cycles\n", x, t2);
+
+ t2 = 0;
+ for (y = 0; y < 2048; y++) {
+ t_start();
+ t1 = t_read();
+ zzz = sizeof(buf[0]);
+ if ((err = katja_decrypt_key(buf[1], z, buf[0], &zzz, "testprog", 8, find_hash("sha1"),
+ &zz, &key)) != CRYPT_OK) {
+ fprintf(stderr, "\n\nkatja_decrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ t2 += t1;
+ }
+ t2 >>= 11;
+ fprintf(stderr, "Katja-%lu decrypt_key took %15llu cycles\n", x, t2);
+
+
+ katja_free(&key);
+ }
+}
+#else
+void time_katja(void) { fprintf(stderr, "NO Katja\n"); }
+#endif
+
+#ifdef MECC
+/* time various ECC operations */
+void time_ecc(void)
+{
+ ecc_key key;
+ ulong64 t1, t2;
+ unsigned char buf[2][256];
+ unsigned long i, w, x, y, z;
+ int err, stat;
+ static unsigned long sizes[] = {
+#ifdef ECC112
+112/8,
+#endif
+#ifdef ECC128
+128/8,
+#endif
+#ifdef ECC160
+160/8,
+#endif
+#ifdef ECC192
+192/8,
+#endif
+#ifdef ECC224
+224/8,
+#endif
+#ifdef ECC256
+256/8,
+#endif
+#ifdef ECC384
+384/8,
+#endif
+#ifdef ECC521
+521/8,
+#endif
+100000};
+
+ for (x = sizes[i=0]; x < 100000; x = sizes[++i]) {
+ t2 = 0;
+ for (y = 0; y < 256; y++) {
+ t_start();
+ t1 = t_read();
+ if ((err = ecc_make_key(&yarrow_prng, find_prng("yarrow"), x, &key)) != CRYPT_OK) {
+ fprintf(stderr, "\n\necc_make_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ t2 += t1;
+
+#ifdef LTC_PROFILE
+ t2 <<= 8;
+ break;
+#endif
+
+ if (y < 255) {
+ ecc_free(&key);
+ }
+ }
+ t2 >>= 8;
+ fprintf(stderr, "ECC-%lu make_key took %15llu cycles\n", x*8, t2);
+
+ t2 = 0;
+ for (y = 0; y < 256; y++) {
+ t_start();
+ t1 = t_read();
+ z = sizeof(buf[1]);
+ if ((err = ecc_encrypt_key(buf[0], 20, buf[1], &z, &yarrow_prng, find_prng("yarrow"), find_hash("sha1"),
+ &key)) != CRYPT_OK) {
+ fprintf(stderr, "\n\necc_encrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ t2 += t1;
+#ifdef LTC_PROFILE
+ t2 <<= 8;
+ break;
+#endif
+ }
+ t2 >>= 8;
+ fprintf(stderr, "ECC-%lu encrypt_key took %15llu cycles\n", x*8, t2);
+
+ t2 = 0;
+ for (y = 0; y < 256; y++) {
+ t_start();
+ t1 = t_read();
+ w = 20;
+ if ((err = ecc_decrypt_key(buf[1], z, buf[0], &w, &key)) != CRYPT_OK) {
+ fprintf(stderr, "\n\necc_decrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ t2 += t1;
+#ifdef LTC_PROFILE
+ t2 <<= 8;
+ break;
+#endif
+ }
+ t2 >>= 8;
+ fprintf(stderr, "ECC-%lu decrypt_key took %15llu cycles\n", x*8, t2);
+
+ t2 = 0;
+ for (y = 0; y < 256; y++) {
+ t_start();
+ t1 = t_read();
+ z = sizeof(buf[1]);
+ if ((err = ecc_sign_hash(buf[0], 20, buf[1], &z, &yarrow_prng,
+ find_prng("yarrow"), &key)) != CRYPT_OK) {
+ fprintf(stderr, "\n\necc_sign_hash says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ t2 += t1;
+#ifdef LTC_PROFILE
+ t2 <<= 8;
+ break;
+#endif
+ }
+ t2 >>= 8;
+ fprintf(stderr, "ECC-%lu sign_hash took %15llu cycles\n", x*8, t2);
+
+ t2 = 0;
+ for (y = 0; y < 256; y++) {
+ t_start();
+ t1 = t_read();
+ if ((err = ecc_verify_hash(buf[1], z, buf[0], 20, &stat, &key)) != CRYPT_OK) {
+ fprintf(stderr, "\n\necc_verify_hash says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
+ exit(EXIT_FAILURE);
+ }
+ if (stat == 0) {
+ fprintf(stderr, "\n\necc_verify_hash for ECC-%lu failed to verify signature(%lu)\n", x*8, y);
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ t2 += t1;
+#ifdef LTC_PROFILE
+ t2 <<= 8;
+ break;
+#endif
+ }
+ t2 >>= 8;
+ fprintf(stderr, "ECC-%lu verify_hash took %15llu cycles\n", x*8, t2);
+
+ fprintf(stderr, "\n\n");
+ ecc_free(&key);
+ }
+}
+#else
+void time_ecc(void) { fprintf(stderr, "NO ECC\n"); }
+#endif
+
+void time_macs_(unsigned long MAC_SIZE)
+{
+ unsigned char *buf, key[16], tag[16];
+ ulong64 t1, t2;
+ unsigned long x, z;
+ int err, cipher_idx, hash_idx;
+
+ fprintf(stderr, "\nMAC Timings (cycles/byte on %luKB blocks):\n", MAC_SIZE);
+
+ buf = XMALLOC(MAC_SIZE*1024);
+ if (buf == NULL) {
+ fprintf(stderr, "\n\nout of heap yo\n\n");
+ exit(EXIT_FAILURE);
+ }
+
+ cipher_idx = find_cipher("aes");
+ hash_idx = find_hash("sha1");
+
+ if (cipher_idx == -1 || hash_idx == -1) {
+ fprintf(stderr, "Warning the MAC tests requires AES and SHA1 to operate... so sorry\n");
+ return;
+ }
+
+ yarrow_read(buf, MAC_SIZE*1024, &yarrow_prng);
+ yarrow_read(key, 16, &yarrow_prng);
+
+#ifdef LTC_OMAC
+ t2 = -1;
+ for (x = 0; x < 10000; x++) {
+ t_start();
+ t1 = t_read();
+ z = 16;
+ if ((err = omac_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) {
+ fprintf(stderr, "\n\nomac error... %s\n", error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ if (t1 < t2) t2 = t1;
+ }
+ fprintf(stderr, "OMAC-%s\t\t%9llu\n", cipher_descriptor[cipher_idx].name, t2/(ulong64)(MAC_SIZE*1024));
+#endif
+
+#ifdef LTC_XCBC
+ t2 = -1;
+ for (x = 0; x < 10000; x++) {
+ t_start();
+ t1 = t_read();
+ z = 16;
+ if ((err = xcbc_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) {
+ fprintf(stderr, "\n\nxcbc error... %s\n", error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ if (t1 < t2) t2 = t1;
+ }
+ fprintf(stderr, "XCBC-%s\t\t%9llu\n", cipher_descriptor[cipher_idx].name, t2/(ulong64)(MAC_SIZE*1024));
+#endif
+
+#ifdef LTC_F9_MODE
+ t2 = -1;
+ for (x = 0; x < 10000; x++) {
+ t_start();
+ t1 = t_read();
+ z = 16;
+ if ((err = f9_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) {
+ fprintf(stderr, "\n\nF9 error... %s\n", error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ if (t1 < t2) t2 = t1;
+ }
+ fprintf(stderr, "F9-%s\t\t\t%9llu\n", cipher_descriptor[cipher_idx].name, t2/(ulong64)(MAC_SIZE*1024));
+#endif
+
+#ifdef LTC_PMAC
+ t2 = -1;
+ for (x = 0; x < 10000; x++) {
+ t_start();
+ t1 = t_read();
+ z = 16;
+ if ((err = pmac_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) {
+ fprintf(stderr, "\n\npmac error... %s\n", error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ if (t1 < t2) t2 = t1;
+ }
+ fprintf(stderr, "PMAC-AES\t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024));
+#endif
+
+#ifdef PELICAN
+ t2 = -1;
+ for (x = 0; x < 10000; x++) {
+ t_start();
+ t1 = t_read();
+ z = 16;
+ if ((err = pelican_memory(key, 16, buf, MAC_SIZE*1024, tag)) != CRYPT_OK) {
+ fprintf(stderr, "\n\npelican error... %s\n", error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ if (t1 < t2) t2 = t1;
+ }
+ fprintf(stderr, "PELICAN \t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024));
+#endif
+
+#ifdef LTC_HMAC
+ t2 = -1;
+ for (x = 0; x < 10000; x++) {
+ t_start();
+ t1 = t_read();
+ z = 16;
+ if ((err = hmac_memory(hash_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) {
+ fprintf(stderr, "\n\nhmac error... %s\n", error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ if (t1 < t2) t2 = t1;
+ }
+ fprintf(stderr, "HMAC-%s\t\t%9llu\n", hash_descriptor[hash_idx].name, t2/(ulong64)(MAC_SIZE*1024));
+#endif
+
+ XFREE(buf);
+}
+
+void time_macs(void)
+{
+ time_macs_(1);
+ time_macs_(4);
+ time_macs_(32);
+}
+
+void time_encmacs_(unsigned long MAC_SIZE)
+{
+ unsigned char *buf, IV[16], key[16], tag[16];
+ ulong64 t1, t2;
+ unsigned long x, z;
+ int err, cipher_idx;
+ symmetric_key skey;
+
+ fprintf(stderr, "\nENC+MAC Timings (zero byte AAD, 16 byte IV, cycles/byte on %luKB blocks):\n", MAC_SIZE);
+
+ buf = XMALLOC(MAC_SIZE*1024);
+ if (buf == NULL) {
+ fprintf(stderr, "\n\nout of heap yo\n\n");
+ exit(EXIT_FAILURE);
+ }
+
+ cipher_idx = find_cipher("aes");
+
+ yarrow_read(buf, MAC_SIZE*1024, &yarrow_prng);
+ yarrow_read(key, 16, &yarrow_prng);
+ yarrow_read(IV, 16, &yarrow_prng);
+
+#ifdef EAX_MODE
+ t2 = -1;
+ for (x = 0; x < 10000; x++) {
+ t_start();
+ t1 = t_read();
+ z = 16;
+ if ((err = eax_encrypt_authenticate_memory(cipher_idx, key, 16, IV, 16, NULL, 0, buf, MAC_SIZE*1024, buf, tag, &z)) != CRYPT_OK) {
+ fprintf(stderr, "\nEAX error... %s\n", error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ if (t1 < t2) t2 = t1;
+ }
+ fprintf(stderr, "EAX \t\t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024));
+#endif
+
+#ifdef OCB_MODE
+ t2 = -1;
+ for (x = 0; x < 10000; x++) {
+ t_start();
+ t1 = t_read();
+ z = 16;
+ if ((err = ocb_encrypt_authenticate_memory(cipher_idx, key, 16, IV, buf, MAC_SIZE*1024, buf, tag, &z)) != CRYPT_OK) {
+ fprintf(stderr, "\nOCB error... %s\n", error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ if (t1 < t2) t2 = t1;
+ }
+ fprintf(stderr, "OCB \t\t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024));
+#endif
+
+#ifdef CCM_MODE
+ t2 = -1;
+ for (x = 0; x < 10000; x++) {
+ t_start();
+ t1 = t_read();
+ z = 16;
+ if ((err = ccm_memory(cipher_idx, key, 16, NULL, IV, 16, NULL, 0, buf, MAC_SIZE*1024, buf, tag, &z, CCM_ENCRYPT)) != CRYPT_OK) {
+ fprintf(stderr, "\nCCM error... %s\n", error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ if (t1 < t2) t2 = t1;
+ }
+ fprintf(stderr, "CCM (no-precomp) \t%9llu\n", t2/(ulong64)(MAC_SIZE*1024));
+
+ cipher_descriptor[cipher_idx].setup(key, 16, 0, &skey);
+ t2 = -1;
+ for (x = 0; x < 10000; x++) {
+ t_start();
+ t1 = t_read();
+ z = 16;
+ if ((err = ccm_memory(cipher_idx, key, 16, &skey, IV, 16, NULL, 0, buf, MAC_SIZE*1024, buf, tag, &z, CCM_ENCRYPT)) != CRYPT_OK) {
+ fprintf(stderr, "\nCCM error... %s\n", error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ if (t1 < t2) t2 = t1;
+ }
+ fprintf(stderr, "CCM (precomp) \t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024));
+ cipher_descriptor[cipher_idx].done(&skey);
+#endif
+
+#ifdef GCM_MODE
+ t2 = -1;
+ for (x = 0; x < 100; x++) {
+ t_start();
+ t1 = t_read();
+ z = 16;
+ if ((err = gcm_memory(cipher_idx, key, 16, IV, 16, NULL, 0, buf, MAC_SIZE*1024, buf, tag, &z, GCM_ENCRYPT)) != CRYPT_OK) {
+ fprintf(stderr, "\nGCM error... %s\n", error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ if (t1 < t2) t2 = t1;
+ }
+ fprintf(stderr, "GCM (no-precomp)\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024));
+
+ {
+ gcm_state gcm
+#ifdef GCM_TABLES_SSE2
+__attribute__ ((aligned (16)))
+#endif
+;
+
+ if ((err = gcm_init(&gcm, cipher_idx, key, 16)) != CRYPT_OK) { fprintf(stderr, "gcm_init: %s\n", error_to_string(err)); exit(EXIT_FAILURE); }
+ t2 = -1;
+ for (x = 0; x < 10000; x++) {
+ t_start();
+ t1 = t_read();
+ z = 16;
+ if ((err = gcm_reset(&gcm)) != CRYPT_OK) {
+ fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+ if ((err = gcm_add_iv(&gcm, IV, 16)) != CRYPT_OK) {
+ fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+ if ((err = gcm_add_aad(&gcm, NULL, 0)) != CRYPT_OK) {
+ fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+ if ((err = gcm_process(&gcm, buf, MAC_SIZE*1024, buf, GCM_ENCRYPT)) != CRYPT_OK) {
+ fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+
+ if ((err = gcm_done(&gcm, tag, &z)) != CRYPT_OK) {
+ fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+ t1 = t_read() - t1;
+ if (t1 < t2) t2 = t1;
+ }
+ fprintf(stderr, "GCM (precomp)\t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024));
+ }
+
+#endif
+
+}
+
+void time_encmacs(void)
+{
+ time_encmacs_(1);
+ time_encmacs_(4);
+ time_encmacs_(32);
+}
+
+/* $Source: /cvs/libtom/libtomcrypt/testprof/x86_prof.c,v $ */
+/* $Revision: 1.51 $ */
+/* $Date: 2006/11/21 00:10:18 $ */