summaryrefslogtreecommitdiffhomepage
path: root/libtomcrypt/src/stream/sober128/sober128_stream.c
diff options
context:
space:
mode:
Diffstat (limited to 'libtomcrypt/src/stream/sober128/sober128_stream.c')
-rw-r--r--libtomcrypt/src/stream/sober128/sober128_stream.c346
1 files changed, 346 insertions, 0 deletions
diff --git a/libtomcrypt/src/stream/sober128/sober128_stream.c b/libtomcrypt/src/stream/sober128/sober128_stream.c
new file mode 100644
index 0000000..5c35eda
--- /dev/null
+++ b/libtomcrypt/src/stream/sober128/sober128_stream.c
@@ -0,0 +1,346 @@
+/* LibTomCrypt, modular cryptographic library -- Tom St Denis
+ *
+ * LibTomCrypt is a library that provides various cryptographic
+ * algorithms in a highly modular and flexible manner.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ */
+#include "tomcrypt.h"
+
+/**
+ @file sober128_stream.c
+ Implementation of SOBER-128 by Tom St Denis.
+ Based on s128fast.c reference code supplied by Greg Rose of QUALCOMM.
+*/
+
+#ifdef LTC_SOBER128
+
+#define __LTC_SOBER128TAB_C__
+#include "sober128tab.c"
+
+/* don't change these... */
+#define N 17
+#define FOLD N /* how many iterations of folding to do */
+#define INITKONST 0x6996c53a /* value of KONST to use during key loading */
+#define KEYP 15 /* where to insert key words */
+#define FOLDP 4 /* where to insert non-linear feedback */
+
+#define B(x,i) ((unsigned char)(((x) >> (8*i)) & 0xFF))
+
+static ulong32 BYTE2WORD(unsigned char *b)
+{
+ ulong32 t;
+ LOAD32L(t, b);
+ return t;
+}
+
+static void XORWORD(ulong32 w, const unsigned char *in, unsigned char *out)
+{
+ ulong32 t;
+ LOAD32L(t, in);
+ t ^= w;
+ STORE32L(t, out);
+}
+
+/* give correct offset for the current position of the register,
+ * where logically R[0] is at position "zero".
+ */
+#define OFF(zero, i) (((zero)+(i)) % N)
+
+/* step the LFSR */
+/* After stepping, "zero" moves right one place */
+#define STEP(R,z) \
+ R[OFF(z,0)] = R[OFF(z,15)] ^ R[OFF(z,4)] ^ (R[OFF(z,0)] << 8) ^ Multab[(R[OFF(z,0)] >> 24) & 0xFF];
+
+static void cycle(ulong32 *R)
+{
+ ulong32 t;
+ int i;
+
+ STEP(R,0);
+ t = R[0];
+ for (i = 1; i < N; ++i) {
+ R[i-1] = R[i];
+ }
+ R[N-1] = t;
+}
+
+/* Return a non-linear function of some parts of the register.
+ */
+#define NLFUNC(c,z) \
+{ \
+ t = c->R[OFF(z,0)] + c->R[OFF(z,16)]; \
+ t ^= Sbox[(t >> 24) & 0xFF]; \
+ t = RORc(t, 8); \
+ t = ((t + c->R[OFF(z,1)]) ^ c->konst) + c->R[OFF(z,6)]; \
+ t ^= Sbox[(t >> 24) & 0xFF]; \
+ t = t + c->R[OFF(z,13)]; \
+}
+
+static ulong32 nltap(sober128_state *c)
+{
+ ulong32 t;
+ NLFUNC(c, 0);
+ return t;
+}
+
+/* Save the current register state
+ */
+static void s128_savestate(sober128_state *c)
+{
+ int i;
+ for (i = 0; i < N; ++i) {
+ c->initR[i] = c->R[i];
+ }
+}
+
+/* initialise to previously saved register state
+ */
+static void s128_reloadstate(sober128_state *c)
+{
+ int i;
+
+ for (i = 0; i < N; ++i) {
+ c->R[i] = c->initR[i];
+ }
+}
+
+/* Initialise "konst"
+ */
+static void s128_genkonst(sober128_state *c)
+{
+ ulong32 newkonst;
+
+ do {
+ cycle(c->R);
+ newkonst = nltap(c);
+ } while ((newkonst & 0xFF000000) == 0);
+ c->konst = newkonst;
+}
+
+/* Load key material into the register
+ */
+#define ADDKEY(k) \
+ c->R[KEYP] += (k);
+
+#define XORNL(nl) \
+ c->R[FOLDP] ^= (nl);
+
+/* nonlinear diffusion of register for key */
+#define DROUND(z) STEP(c->R,z); NLFUNC(c,(z+1)); c->R[OFF((z+1),FOLDP)] ^= t;
+static void s128_diffuse(sober128_state *c)
+{
+ ulong32 t;
+ /* relies on FOLD == N == 17! */
+ DROUND(0);
+ DROUND(1);
+ DROUND(2);
+ DROUND(3);
+ DROUND(4);
+ DROUND(5);
+ DROUND(6);
+ DROUND(7);
+ DROUND(8);
+ DROUND(9);
+ DROUND(10);
+ DROUND(11);
+ DROUND(12);
+ DROUND(13);
+ DROUND(14);
+ DROUND(15);
+ DROUND(16);
+}
+
+/**
+ Initialize an Sober128 context (only the key)
+ @param c [out] The destination of the Sober128 state
+ @param key The secret key
+ @param keylen The length of the secret key (octets)
+ @return CRYPT_OK if successful
+*/
+int sober128_stream_setup(sober128_state *c, const unsigned char *key, unsigned long keylen)
+{
+ ulong32 i, k;
+
+ LTC_ARGCHK(c != NULL);
+ LTC_ARGCHK(key != NULL);
+ LTC_ARGCHK(keylen > 0);
+
+ /* keylen must be multiple of 4 bytes */
+ if ((keylen & 3) != 0) {
+ return CRYPT_INVALID_KEYSIZE;
+ }
+
+ /* Register initialised to Fibonacci numbers */
+ c->R[0] = 1;
+ c->R[1] = 1;
+ for (i = 2; i < N; ++i) {
+ c->R[i] = c->R[i-1] + c->R[i-2];
+ }
+ c->konst = INITKONST;
+
+ for (i = 0; i < keylen; i += 4) {
+ k = BYTE2WORD((unsigned char *)&key[i]);
+ ADDKEY(k);
+ cycle(c->R);
+ XORNL(nltap(c));
+ }
+
+ /* also fold in the length of the key */
+ ADDKEY(keylen);
+
+ /* now diffuse */
+ s128_diffuse(c);
+ s128_genkonst(c);
+ s128_savestate(c);
+ c->nbuf = 0;
+
+ return CRYPT_OK;
+}
+
+/**
+ Set IV to the Sober128 state
+ @param c The Sober12820 state
+ @param iv The IV data to add
+ @param ivlen The length of the IV (must be 12)
+ @return CRYPT_OK on success
+ */
+int sober128_stream_setiv(sober128_state *c, const unsigned char *iv, unsigned long ivlen)
+{
+ ulong32 i, k;
+
+ LTC_ARGCHK(c != NULL);
+ LTC_ARGCHK(iv != NULL);
+ LTC_ARGCHK(ivlen > 0);
+
+ /* ok we are adding an IV then... */
+ s128_reloadstate(c);
+
+ /* ivlen must be multiple of 4 bytes */
+ if ((ivlen & 3) != 0) {
+ return CRYPT_INVALID_KEYSIZE;
+ }
+
+ for (i = 0; i < ivlen; i += 4) {
+ k = BYTE2WORD((unsigned char *)&iv[i]);
+ ADDKEY(k);
+ cycle(c->R);
+ XORNL(nltap(c));
+ }
+
+ /* also fold in the length of the key */
+ ADDKEY(ivlen);
+
+ /* now diffuse */
+ s128_diffuse(c);
+ c->nbuf = 0;
+
+ return CRYPT_OK;
+}
+
+/* XOR pseudo-random bytes into buffer
+ */
+#define SROUND(z) STEP(c->R,z); NLFUNC(c,(z+1)); XORWORD(t, in+(z*4), out+(z*4));
+
+/**
+ Encrypt (or decrypt) bytes of ciphertext (or plaintext) with Sober128
+ @param c The Sober128 state
+ @param in The plaintext (or ciphertext)
+ @param inlen The length of the input (octets)
+ @param out [out] The ciphertext (or plaintext), length inlen
+ @return CRYPT_OK if successful
+*/
+int sober128_stream_crypt(sober128_state *c, const unsigned char *in, unsigned long inlen, unsigned char *out)
+{
+ ulong32 t;
+
+ if (inlen == 0) return CRYPT_OK; /* nothing to do */
+ LTC_ARGCHK(out != NULL);
+ LTC_ARGCHK(c != NULL);
+
+ /* handle any previously buffered bytes */
+ while (c->nbuf != 0 && inlen != 0) {
+ *out++ = *in++ ^ (unsigned char)(c->sbuf & 0xFF);
+ c->sbuf >>= 8;
+ c->nbuf -= 8;
+ --inlen;
+ }
+
+#ifndef LTC_SMALL_CODE
+ /* do lots at a time, if there's enough to do */
+ while (inlen >= N*4) {
+ SROUND(0);
+ SROUND(1);
+ SROUND(2);
+ SROUND(3);
+ SROUND(4);
+ SROUND(5);
+ SROUND(6);
+ SROUND(7);
+ SROUND(8);
+ SROUND(9);
+ SROUND(10);
+ SROUND(11);
+ SROUND(12);
+ SROUND(13);
+ SROUND(14);
+ SROUND(15);
+ SROUND(16);
+ out += 4*N;
+ in += 4*N;
+ inlen -= 4*N;
+ }
+#endif
+
+ /* do small or odd size buffers the slow way */
+ while (4 <= inlen) {
+ cycle(c->R);
+ t = nltap(c);
+ XORWORD(t, in, out);
+ out += 4;
+ in += 4;
+ inlen -= 4;
+ }
+
+ /* handle any trailing bytes */
+ if (inlen != 0) {
+ cycle(c->R);
+ c->sbuf = nltap(c);
+ c->nbuf = 32;
+ while (c->nbuf != 0 && inlen != 0) {
+ *out++ = *in++ ^ (unsigned char)(c->sbuf & 0xFF);
+ c->sbuf >>= 8;
+ c->nbuf -= 8;
+ --inlen;
+ }
+ }
+
+ return CRYPT_OK;
+}
+
+int sober128_stream_keystream(sober128_state *c, unsigned char *out, unsigned long outlen)
+{
+ if (outlen == 0) return CRYPT_OK; /* nothing to do */
+ LTC_ARGCHK(out != NULL);
+ XMEMSET(out, 0, outlen);
+ return sober128_stream_crypt(c, out, outlen, out);
+}
+
+/**
+ Terminate and clear Sober128 state
+ @param c The Sober128 state
+ @return CRYPT_OK on success
+*/
+int sober128_stream_done(sober128_state *c)
+{
+ LTC_ARGCHK(c != NULL);
+ XMEMSET(c, 0, sizeof(sober128_state));
+ return CRYPT_OK;
+}
+
+#endif
+
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */