summaryrefslogtreecommitdiffhomepage
path: root/libtomcrypt/src/ciphers/xtea.c
diff options
context:
space:
mode:
Diffstat (limited to 'libtomcrypt/src/ciphers/xtea.c')
-rw-r--r--libtomcrypt/src/ciphers/xtea.c211
1 files changed, 211 insertions, 0 deletions
diff --git a/libtomcrypt/src/ciphers/xtea.c b/libtomcrypt/src/ciphers/xtea.c
new file mode 100644
index 0000000..ac73400
--- /dev/null
+++ b/libtomcrypt/src/ciphers/xtea.c
@@ -0,0 +1,211 @@
+/* LibTomCrypt, modular cryptographic library -- Tom St Denis
+ *
+ * LibTomCrypt is a library that provides various cryptographic
+ * algorithms in a highly modular and flexible manner.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
+ */
+
+/**
+ @file xtea.c
+ Implementation of XTEA, Tom St Denis
+*/
+#include "tomcrypt.h"
+
+#ifdef XTEA
+
+const struct ltc_cipher_descriptor xtea_desc =
+{
+ "xtea",
+ 1,
+ 16, 16, 8, 32,
+ &xtea_setup,
+ &xtea_ecb_encrypt,
+ &xtea_ecb_decrypt,
+ &xtea_test,
+ &xtea_done,
+ &xtea_keysize,
+ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
+};
+
+int xtea_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
+{
+ unsigned long x, sum, K[4];
+
+ LTC_ARGCHK(key != NULL);
+ LTC_ARGCHK(skey != NULL);
+
+ /* check arguments */
+ if (keylen != 16) {
+ return CRYPT_INVALID_KEYSIZE;
+ }
+
+ if (num_rounds != 0 && num_rounds != 32) {
+ return CRYPT_INVALID_ROUNDS;
+ }
+
+ /* load key */
+ LOAD32L(K[0], key+0);
+ LOAD32L(K[1], key+4);
+ LOAD32L(K[2], key+8);
+ LOAD32L(K[3], key+12);
+
+ for (x = sum = 0; x < 32; x++) {
+ skey->xtea.A[x] = (sum + K[sum&3]) & 0xFFFFFFFFUL;
+ sum = (sum + 0x9E3779B9UL) & 0xFFFFFFFFUL;
+ skey->xtea.B[x] = (sum + K[(sum>>11)&3]) & 0xFFFFFFFFUL;
+ }
+
+#ifdef LTC_CLEAN_STACK
+ zeromem(&K, sizeof(K));
+#endif
+
+ return CRYPT_OK;
+}
+
+/**
+ Encrypts a block of text with XTEA
+ @param pt The input plaintext (8 bytes)
+ @param ct The output ciphertext (8 bytes)
+ @param skey The key as scheduled
+ @return CRYPT_OK if successful
+*/
+int xtea_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
+{
+ unsigned long y, z;
+ int r;
+
+ LTC_ARGCHK(pt != NULL);
+ LTC_ARGCHK(ct != NULL);
+ LTC_ARGCHK(skey != NULL);
+
+ LOAD32L(y, &pt[0]);
+ LOAD32L(z, &pt[4]);
+ for (r = 0; r < 32; r += 4) {
+ y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r])) & 0xFFFFFFFFUL;
+ z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r])) & 0xFFFFFFFFUL;
+
+ y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r+1])) & 0xFFFFFFFFUL;
+ z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r+1])) & 0xFFFFFFFFUL;
+
+ y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r+2])) & 0xFFFFFFFFUL;
+ z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r+2])) & 0xFFFFFFFFUL;
+
+ y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r+3])) & 0xFFFFFFFFUL;
+ z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r+3])) & 0xFFFFFFFFUL;
+ }
+ STORE32L(y, &ct[0]);
+ STORE32L(z, &ct[4]);
+ return CRYPT_OK;
+}
+
+/**
+ Decrypts a block of text with XTEA
+ @param ct The input ciphertext (8 bytes)
+ @param pt The output plaintext (8 bytes)
+ @param skey The key as scheduled
+ @return CRYPT_OK if successful
+*/
+int xtea_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
+{
+ unsigned long y, z;
+ int r;
+
+ LTC_ARGCHK(pt != NULL);
+ LTC_ARGCHK(ct != NULL);
+ LTC_ARGCHK(skey != NULL);
+
+ LOAD32L(y, &ct[0]);
+ LOAD32L(z, &ct[4]);
+ for (r = 31; r >= 0; r -= 4) {
+ z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r])) & 0xFFFFFFFFUL;
+ y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r])) & 0xFFFFFFFFUL;
+
+ z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r-1])) & 0xFFFFFFFFUL;
+ y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r-1])) & 0xFFFFFFFFUL;
+
+ z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r-2])) & 0xFFFFFFFFUL;
+ y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r-2])) & 0xFFFFFFFFUL;
+
+ z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r-3])) & 0xFFFFFFFFUL;
+ y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r-3])) & 0xFFFFFFFFUL;
+ }
+ STORE32L(y, &pt[0]);
+ STORE32L(z, &pt[4]);
+ return CRYPT_OK;
+}
+
+/**
+ Performs a self-test of the XTEA block cipher
+ @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
+*/
+int xtea_test(void)
+{
+ #ifndef LTC_TEST
+ return CRYPT_NOP;
+ #else
+ static const unsigned char key[16] =
+ { 0x78, 0x56, 0x34, 0x12, 0xf0, 0xcd, 0xcb, 0x9a,
+ 0x48, 0x37, 0x26, 0x15, 0xc0, 0xbf, 0xae, 0x9d };
+ static const unsigned char pt[8] =
+ { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08 };
+ static const unsigned char ct[8] =
+ { 0x75, 0xd7, 0xc5, 0xbf, 0xcf, 0x58, 0xc9, 0x3f };
+ unsigned char tmp[2][8];
+ symmetric_key skey;
+ int err, y;
+
+ if ((err = xtea_setup(key, 16, 0, &skey)) != CRYPT_OK) {
+ return err;
+ }
+ xtea_ecb_encrypt(pt, tmp[0], &skey);
+ xtea_ecb_decrypt(tmp[0], tmp[1], &skey);
+
+ if (XMEMCMP(tmp[0], ct, 8) != 0 || XMEMCMP(tmp[1], pt, 8) != 0) {
+ return CRYPT_FAIL_TESTVECTOR;
+ }
+
+ /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
+ for (y = 0; y < 8; y++) tmp[0][y] = 0;
+ for (y = 0; y < 1000; y++) xtea_ecb_encrypt(tmp[0], tmp[0], &skey);
+ for (y = 0; y < 1000; y++) xtea_ecb_decrypt(tmp[0], tmp[0], &skey);
+ for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
+
+ return CRYPT_OK;
+ #endif
+}
+
+/** Terminate the context
+ @param skey The scheduled key
+*/
+void xtea_done(symmetric_key *skey)
+{
+}
+
+/**
+ Gets suitable key size
+ @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
+ @return CRYPT_OK if the input key size is acceptable.
+*/
+int xtea_keysize(int *keysize)
+{
+ LTC_ARGCHK(keysize != NULL);
+ if (*keysize < 16) {
+ return CRYPT_INVALID_KEYSIZE;
+ }
+ *keysize = 16;
+ return CRYPT_OK;
+}
+
+
+#endif
+
+
+
+
+/* $Source: /cvs/libtom/libtomcrypt/src/ciphers/xtea.c,v $ */
+/* $Revision: 1.12 $ */
+/* $Date: 2006/11/08 23:01:06 $ */