summaryrefslogtreecommitdiffhomepage
path: root/libtomcrypt/src/ciphers/rc2.c
diff options
context:
space:
mode:
Diffstat (limited to 'libtomcrypt/src/ciphers/rc2.c')
-rw-r--r--libtomcrypt/src/ciphers/rc2.c362
1 files changed, 362 insertions, 0 deletions
diff --git a/libtomcrypt/src/ciphers/rc2.c b/libtomcrypt/src/ciphers/rc2.c
new file mode 100644
index 0000000..de62cda
--- /dev/null
+++ b/libtomcrypt/src/ciphers/rc2.c
@@ -0,0 +1,362 @@
+/* LibTomCrypt, modular cryptographic library -- Tom St Denis
+ *
+ * LibTomCrypt is a library that provides various cryptographic
+ * algorithms in a highly modular and flexible manner.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
+ */
+/**********************************************************************\
+* To commemorate the 1996 RSA Data Security Conference, the following *
+* code is released into the public domain by its author. Prost! *
+* *
+* This cipher uses 16-bit words and little-endian byte ordering. *
+* I wonder which processor it was optimized for? *
+* *
+* Thanks to CodeView, SoftIce, and D86 for helping bring this code to *
+* the public. *
+\**********************************************************************/
+#include <tomcrypt.h>
+
+/**
+ @file rc2.c
+ Implementation of RC2
+*/
+
+#ifdef RC2
+
+const struct ltc_cipher_descriptor rc2_desc = {
+ "rc2",
+ 12, 8, 128, 8, 16,
+ &rc2_setup,
+ &rc2_ecb_encrypt,
+ &rc2_ecb_decrypt,
+ &rc2_test,
+ &rc2_done,
+ &rc2_keysize,
+ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
+};
+
+/* 256-entry permutation table, probably derived somehow from pi */
+static const unsigned char permute[256] = {
+ 217,120,249,196, 25,221,181,237, 40,233,253,121, 74,160,216,157,
+ 198,126, 55,131, 43,118, 83,142, 98, 76,100,136, 68,139,251,162,
+ 23,154, 89,245,135,179, 79, 19, 97, 69,109,141, 9,129,125, 50,
+ 189,143, 64,235,134,183,123, 11,240,149, 33, 34, 92,107, 78,130,
+ 84,214,101,147,206, 96,178, 28,115, 86,192, 20,167,140,241,220,
+ 18,117,202, 31, 59,190,228,209, 66, 61,212, 48,163, 60,182, 38,
+ 111,191, 14,218, 70,105, 7, 87, 39,242, 29,155,188,148, 67, 3,
+ 248, 17,199,246,144,239, 62,231, 6,195,213, 47,200,102, 30,215,
+ 8,232,234,222,128, 82,238,247,132,170,114,172, 53, 77,106, 42,
+ 150, 26,210,113, 90, 21, 73,116, 75,159,208, 94, 4, 24,164,236,
+ 194,224, 65,110, 15, 81,203,204, 36,145,175, 80,161,244,112, 57,
+ 153,124, 58,133, 35,184,180,122,252, 2, 54, 91, 37, 85,151, 49,
+ 45, 93,250,152,227,138,146,174, 5,223, 41, 16,103,108,186,201,
+ 211, 0,230,207,225,158,168, 44, 99, 22, 1, 63, 88,226,137,169,
+ 13, 56, 52, 27,171, 51,255,176,187, 72, 12, 95,185,177,205, 46,
+ 197,243,219, 71,229,165,156,119, 10,166, 32,104,254,127,193,173
+};
+
+ /**
+ Initialize the RC2 block cipher
+ @param key The symmetric key you wish to pass
+ @param keylen The key length in bytes
+ @param num_rounds The number of rounds desired (0 for default)
+ @param skey The key in as scheduled by this function.
+ @return CRYPT_OK if successful
+ */
+int rc2_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
+{
+ unsigned *xkey = skey->rc2.xkey;
+ unsigned char tmp[128];
+ unsigned T8, TM;
+ int i, bits;
+
+ LTC_ARGCHK(key != NULL);
+ LTC_ARGCHK(skey != NULL);
+
+ if (keylen < 8 || keylen > 128) {
+ return CRYPT_INVALID_KEYSIZE;
+ }
+
+ if (num_rounds != 0 && num_rounds != 16) {
+ return CRYPT_INVALID_ROUNDS;
+ }
+
+ for (i = 0; i < keylen; i++) {
+ tmp[i] = key[i] & 255;
+ }
+
+ /* Phase 1: Expand input key to 128 bytes */
+ if (keylen < 128) {
+ for (i = keylen; i < 128; i++) {
+ tmp[i] = permute[(tmp[i - 1] + tmp[i - keylen]) & 255];
+ }
+ }
+
+ /* Phase 2 - reduce effective key size to "bits" */
+ bits = keylen<<3;
+ T8 = (unsigned)(bits+7)>>3;
+ TM = (255 >> (unsigned)(7 & -bits));
+ tmp[128 - T8] = permute[tmp[128 - T8] & TM];
+ for (i = 127 - T8; i >= 0; i--) {
+ tmp[i] = permute[tmp[i + 1] ^ tmp[i + T8]];
+ }
+
+ /* Phase 3 - copy to xkey in little-endian order */
+ for (i = 0; i < 64; i++) {
+ xkey[i] = (unsigned)tmp[2*i] + ((unsigned)tmp[2*i+1] << 8);
+ }
+
+#ifdef LTC_CLEAN_STACK
+ zeromem(tmp, sizeof(tmp));
+#endif
+
+ return CRYPT_OK;
+}
+
+/**********************************************************************\
+* Encrypt an 8-byte block of plaintext using the given key. *
+\**********************************************************************/
+/**
+ Encrypts a block of text with RC2
+ @param pt The input plaintext (8 bytes)
+ @param ct The output ciphertext (8 bytes)
+ @param skey The key as scheduled
+ @return CRYPT_OK if successful
+*/
+#ifdef LTC_CLEAN_STACK
+static int _rc2_ecb_encrypt( const unsigned char *pt,
+ unsigned char *ct,
+ symmetric_key *skey)
+#else
+int rc2_ecb_encrypt( const unsigned char *pt,
+ unsigned char *ct,
+ symmetric_key *skey)
+#endif
+{
+ unsigned *xkey;
+ unsigned x76, x54, x32, x10, i;
+
+ LTC_ARGCHK(pt != NULL);
+ LTC_ARGCHK(ct != NULL);
+ LTC_ARGCHK(skey != NULL);
+
+ xkey = skey->rc2.xkey;
+
+ x76 = ((unsigned)pt[7] << 8) + (unsigned)pt[6];
+ x54 = ((unsigned)pt[5] << 8) + (unsigned)pt[4];
+ x32 = ((unsigned)pt[3] << 8) + (unsigned)pt[2];
+ x10 = ((unsigned)pt[1] << 8) + (unsigned)pt[0];
+
+ for (i = 0; i < 16; i++) {
+ x10 = (x10 + (x32 & ~x76) + (x54 & x76) + xkey[4*i+0]) & 0xFFFF;
+ x10 = ((x10 << 1) | (x10 >> 15));
+
+ x32 = (x32 + (x54 & ~x10) + (x76 & x10) + xkey[4*i+1]) & 0xFFFF;
+ x32 = ((x32 << 2) | (x32 >> 14));
+
+ x54 = (x54 + (x76 & ~x32) + (x10 & x32) + xkey[4*i+2]) & 0xFFFF;
+ x54 = ((x54 << 3) | (x54 >> 13));
+
+ x76 = (x76 + (x10 & ~x54) + (x32 & x54) + xkey[4*i+3]) & 0xFFFF;
+ x76 = ((x76 << 5) | (x76 >> 11));
+
+ if (i == 4 || i == 10) {
+ x10 = (x10 + xkey[x76 & 63]) & 0xFFFF;
+ x32 = (x32 + xkey[x10 & 63]) & 0xFFFF;
+ x54 = (x54 + xkey[x32 & 63]) & 0xFFFF;
+ x76 = (x76 + xkey[x54 & 63]) & 0xFFFF;
+ }
+ }
+
+ ct[0] = (unsigned char)x10;
+ ct[1] = (unsigned char)(x10 >> 8);
+ ct[2] = (unsigned char)x32;
+ ct[3] = (unsigned char)(x32 >> 8);
+ ct[4] = (unsigned char)x54;
+ ct[5] = (unsigned char)(x54 >> 8);
+ ct[6] = (unsigned char)x76;
+ ct[7] = (unsigned char)(x76 >> 8);
+
+ return CRYPT_OK;
+}
+
+#ifdef LTC_CLEAN_STACK
+int rc2_ecb_encrypt( const unsigned char *pt,
+ unsigned char *ct,
+ symmetric_key *skey)
+{
+ int err = _rc2_ecb_encrypt(pt, ct, skey);
+ burn_stack(sizeof(unsigned *) + sizeof(unsigned) * 5);
+ return err;
+}
+#endif
+
+/**********************************************************************\
+* Decrypt an 8-byte block of ciphertext using the given key. *
+\**********************************************************************/
+/**
+ Decrypts a block of text with RC2
+ @param ct The input ciphertext (8 bytes)
+ @param pt The output plaintext (8 bytes)
+ @param skey The key as scheduled
+ @return CRYPT_OK if successful
+*/
+#ifdef LTC_CLEAN_STACK
+static int _rc2_ecb_decrypt( const unsigned char *ct,
+ unsigned char *pt,
+ symmetric_key *skey)
+#else
+int rc2_ecb_decrypt( const unsigned char *ct,
+ unsigned char *pt,
+ symmetric_key *skey)
+#endif
+{
+ unsigned x76, x54, x32, x10;
+ unsigned *xkey;
+ int i;
+
+ LTC_ARGCHK(pt != NULL);
+ LTC_ARGCHK(ct != NULL);
+ LTC_ARGCHK(skey != NULL);
+
+ xkey = skey->rc2.xkey;
+
+ x76 = ((unsigned)ct[7] << 8) + (unsigned)ct[6];
+ x54 = ((unsigned)ct[5] << 8) + (unsigned)ct[4];
+ x32 = ((unsigned)ct[3] << 8) + (unsigned)ct[2];
+ x10 = ((unsigned)ct[1] << 8) + (unsigned)ct[0];
+
+ for (i = 15; i >= 0; i--) {
+ if (i == 4 || i == 10) {
+ x76 = (x76 - xkey[x54 & 63]) & 0xFFFF;
+ x54 = (x54 - xkey[x32 & 63]) & 0xFFFF;
+ x32 = (x32 - xkey[x10 & 63]) & 0xFFFF;
+ x10 = (x10 - xkey[x76 & 63]) & 0xFFFF;
+ }
+
+ x76 = ((x76 << 11) | (x76 >> 5));
+ x76 = (x76 - ((x10 & ~x54) + (x32 & x54) + xkey[4*i+3])) & 0xFFFF;
+
+ x54 = ((x54 << 13) | (x54 >> 3));
+ x54 = (x54 - ((x76 & ~x32) + (x10 & x32) + xkey[4*i+2])) & 0xFFFF;
+
+ x32 = ((x32 << 14) | (x32 >> 2));
+ x32 = (x32 - ((x54 & ~x10) + (x76 & x10) + xkey[4*i+1])) & 0xFFFF;
+
+ x10 = ((x10 << 15) | (x10 >> 1));
+ x10 = (x10 - ((x32 & ~x76) + (x54 & x76) + xkey[4*i+0])) & 0xFFFF;
+ }
+
+ pt[0] = (unsigned char)x10;
+ pt[1] = (unsigned char)(x10 >> 8);
+ pt[2] = (unsigned char)x32;
+ pt[3] = (unsigned char)(x32 >> 8);
+ pt[4] = (unsigned char)x54;
+ pt[5] = (unsigned char)(x54 >> 8);
+ pt[6] = (unsigned char)x76;
+ pt[7] = (unsigned char)(x76 >> 8);
+
+ return CRYPT_OK;
+}
+
+#ifdef LTC_CLEAN_STACK
+int rc2_ecb_decrypt( const unsigned char *ct,
+ unsigned char *pt,
+ symmetric_key *skey)
+{
+ int err = _rc2_ecb_decrypt(ct, pt, skey);
+ burn_stack(sizeof(unsigned *) + sizeof(unsigned) * 4 + sizeof(int));
+ return err;
+}
+#endif
+
+/**
+ Performs a self-test of the RC2 block cipher
+ @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
+*/
+int rc2_test(void)
+{
+ #ifndef LTC_TEST
+ return CRYPT_NOP;
+ #else
+ static const struct {
+ int keylen;
+ unsigned char key[16], pt[8], ct[8];
+ } tests[] = {
+
+ { 8,
+ { 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
+ { 0x30, 0x64, 0x9e, 0xdf, 0x9b, 0xe7, 0xd2, 0xc2 }
+
+ },
+ { 16,
+ { 0x88, 0xbc, 0xa9, 0x0e, 0x90, 0x87, 0x5a, 0x7f,
+ 0x0f, 0x79, 0xc3, 0x84, 0x62, 0x7b, 0xaf, 0xb2 },
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0x22, 0x69, 0x55, 0x2a, 0xb0, 0xf8, 0x5c, 0xa6 }
+ }
+ };
+ int x, y, err;
+ symmetric_key skey;
+ unsigned char tmp[2][8];
+
+ for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
+ zeromem(tmp, sizeof(tmp));
+ if ((err = rc2_setup(tests[x].key, tests[x].keylen, 0, &skey)) != CRYPT_OK) {
+ return err;
+ }
+
+ rc2_ecb_encrypt(tests[x].pt, tmp[0], &skey);
+ rc2_ecb_decrypt(tmp[0], tmp[1], &skey);
+
+ if (XMEMCMP(tmp[0], tests[x].ct, 8) != 0 || XMEMCMP(tmp[1], tests[x].pt, 8) != 0) {
+ return CRYPT_FAIL_TESTVECTOR;
+ }
+
+ /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
+ for (y = 0; y < 8; y++) tmp[0][y] = 0;
+ for (y = 0; y < 1000; y++) rc2_ecb_encrypt(tmp[0], tmp[0], &skey);
+ for (y = 0; y < 1000; y++) rc2_ecb_decrypt(tmp[0], tmp[0], &skey);
+ for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
+ }
+ return CRYPT_OK;
+ #endif
+}
+
+/** Terminate the context
+ @param skey The scheduled key
+*/
+void rc2_done(symmetric_key *skey)
+{
+}
+
+/**
+ Gets suitable key size
+ @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
+ @return CRYPT_OK if the input key size is acceptable.
+*/
+int rc2_keysize(int *keysize)
+{
+ LTC_ARGCHK(keysize != NULL);
+ if (*keysize < 8) {
+ return CRYPT_INVALID_KEYSIZE;
+ } else if (*keysize > 128) {
+ *keysize = 128;
+ }
+ return CRYPT_OK;
+}
+
+#endif
+
+
+
+
+/* $Source: /cvs/libtom/libtomcrypt/src/ciphers/rc2.c,v $ */
+/* $Revision: 1.12 $ */
+/* $Date: 2006/11/08 23:01:06 $ */