diff options
author | Steffen Jaeckel <s_jaeckel@gmx.de> | 2019-09-16 15:50:38 +0200 |
---|---|---|
committer | Matt Johnston <matt@ucc.asn.au> | 2019-09-16 21:50:38 +0800 |
commit | 615ed4e46a52b6bfe0bfc581b8c2fbcc6cc488d1 (patch) | |
tree | 12b2ba29ae4c42fc65d64d43968c5d03ab3f4452 /libtommath/bn_mp_prime_strong_lucas_selfridge.c | |
parent | fa116e983b4931010e1082dd5c8bf38bbc77718c (diff) |
update ltm to 1.1.0 and enable FIPS 186.4 compliant key-generation (#79)
* make key-generation compliant to FIPS 186.4
* fix includes in tommath_class.h
* update fuzzcorpus instead of error-out
* fixup fuzzing make-targets
* update Makefile.in
* apply necessary patches to ltm sources
* clean-up not required ltm files
* update to vanilla ltm 1.1.0
this already only contains the required files
* remove set/get double
Diffstat (limited to 'libtommath/bn_mp_prime_strong_lucas_selfridge.c')
-rw-r--r-- | libtommath/bn_mp_prime_strong_lucas_selfridge.c | 411 |
1 files changed, 411 insertions, 0 deletions
diff --git a/libtommath/bn_mp_prime_strong_lucas_selfridge.c b/libtommath/bn_mp_prime_strong_lucas_selfridge.c new file mode 100644 index 0000000..ae4fc8f --- /dev/null +++ b/libtommath/bn_mp_prime_strong_lucas_selfridge.c @@ -0,0 +1,411 @@ +#include "tommath_private.h" +#ifdef BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C + +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * SPDX-License-Identifier: Unlicense + */ + +/* + * See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details + */ +#ifndef LTM_USE_FIPS_ONLY + +/* + * 8-bit is just too small. You can try the Frobenius test + * but that frobenius test can fail, too, for the same reason. + */ +#ifndef MP_8BIT + +/* + * multiply bigint a with int d and put the result in c + * Like mp_mul_d() but with a signed long as the small input + */ +static int s_mp_mul_si(const mp_int *a, long d, mp_int *c) +{ + mp_int t; + int err, neg = 0; + + if ((err = mp_init(&t)) != MP_OKAY) { + return err; + } + if (d < 0) { + neg = 1; + d = -d; + } + + /* + * mp_digit might be smaller than a long, which excludes + * the use of mp_mul_d() here. + */ + if ((err = mp_set_long(&t, (unsigned long) d)) != MP_OKAY) { + goto LBL_MPMULSI_ERR; + } + if ((err = mp_mul(a, &t, c)) != MP_OKAY) { + goto LBL_MPMULSI_ERR; + } + if (neg == 1) { + c->sign = (a->sign == MP_NEG) ? MP_ZPOS: MP_NEG; + } +LBL_MPMULSI_ERR: + mp_clear(&t); + return err; +} +/* + Strong Lucas-Selfridge test. + returns MP_YES if it is a strong L-S prime, MP_NO if it is composite + + Code ported from Thomas Ray Nicely's implementation of the BPSW test + at http://www.trnicely.net/misc/bpsw.html + + Freeware copyright (C) 2016 Thomas R. Nicely <http://www.trnicely.net>. + Released into the public domain by the author, who disclaims any legal + liability arising from its use + + The multi-line comments are made by Thomas R. Nicely and are copied verbatim. + Additional comments marked "CZ" (without the quotes) are by the code-portist. + + (If that name sounds familiar, he is the guy who found the fdiv bug in the + Pentium (P5x, I think) Intel processor) +*/ +int mp_prime_strong_lucas_selfridge(const mp_int *a, int *result) +{ + /* CZ TODO: choose better variable names! */ + mp_int Dz, gcd, Np1, Uz, Vz, U2mz, V2mz, Qmz, Q2mz, Qkdz, T1z, T2z, T3z, T4z, Q2kdz; + /* CZ TODO: Some of them need the full 32 bit, hence the (temporary) exclusion of MP_8BIT */ + int32_t D, Ds, J, sign, P, Q, r, s, u, Nbits; + int e; + int isset, oddness; + + *result = MP_NO; + /* + Find the first element D in the sequence {5, -7, 9, -11, 13, ...} + such that Jacobi(D,N) = -1 (Selfridge's algorithm). Theory + indicates that, if N is not a perfect square, D will "nearly + always" be "small." Just in case, an overflow trap for D is + included. + */ + + if ((e = mp_init_multi(&Dz, &gcd, &Np1, &Uz, &Vz, &U2mz, &V2mz, &Qmz, &Q2mz, &Qkdz, &T1z, &T2z, &T3z, &T4z, &Q2kdz, + NULL)) != MP_OKAY) { + return e; + } + + D = 5; + sign = 1; + + for (;;) { + Ds = sign * D; + sign = -sign; + if ((e = mp_set_long(&Dz, (unsigned long)D)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if ((e = mp_gcd(a, &Dz, &gcd)) != MP_OKAY) { + goto LBL_LS_ERR; + } + /* if 1 < GCD < N then N is composite with factor "D", and + Jacobi(D,N) is technically undefined (but often returned + as zero). */ + if ((mp_cmp_d(&gcd, 1uL) == MP_GT) && (mp_cmp(&gcd, a) == MP_LT)) { + goto LBL_LS_ERR; + } + if (Ds < 0) { + Dz.sign = MP_NEG; + } + if ((e = mp_kronecker(&Dz, a, &J)) != MP_OKAY) { + goto LBL_LS_ERR; + } + + if (J == -1) { + break; + } + D += 2; + + if (D > (INT_MAX - 2)) { + e = MP_VAL; + goto LBL_LS_ERR; + } + } + + + + P = 1; /* Selfridge's choice */ + Q = (1 - Ds) / 4; /* Required so D = P*P - 4*Q */ + + /* NOTE: The conditions (a) N does not divide Q, and + (b) D is square-free or not a perfect square, are included by + some authors; e.g., "Prime numbers and computer methods for + factorization," Hans Riesel (2nd ed., 1994, Birkhauser, Boston), + p. 130. For this particular application of Lucas sequences, + these conditions were found to be immaterial. */ + + /* Now calculate N - Jacobi(D,N) = N + 1 (even), and calculate the + odd positive integer d and positive integer s for which + N + 1 = 2^s*d (similar to the step for N - 1 in Miller's test). + The strong Lucas-Selfridge test then returns N as a strong + Lucas probable prime (slprp) if any of the following + conditions is met: U_d=0, V_d=0, V_2d=0, V_4d=0, V_8d=0, + V_16d=0, ..., etc., ending with V_{2^(s-1)*d}=V_{(N+1)/2}=0 + (all equalities mod N). Thus d is the highest index of U that + must be computed (since V_2m is independent of U), compared + to U_{N+1} for the standard Lucas-Selfridge test; and no + index of V beyond (N+1)/2 is required, just as in the + standard Lucas-Selfridge test. However, the quantity Q^d must + be computed for use (if necessary) in the latter stages of + the test. The result is that the strong Lucas-Selfridge test + has a running time only slightly greater (order of 10 %) than + that of the standard Lucas-Selfridge test, while producing + only (roughly) 30 % as many pseudoprimes (and every strong + Lucas pseudoprime is also a standard Lucas pseudoprime). Thus + the evidence indicates that the strong Lucas-Selfridge test is + more effective than the standard Lucas-Selfridge test, and a + Baillie-PSW test based on the strong Lucas-Selfridge test + should be more reliable. */ + + if ((e = mp_add_d(a, 1uL, &Np1)) != MP_OKAY) { + goto LBL_LS_ERR; + } + s = mp_cnt_lsb(&Np1); + + /* CZ + * This should round towards zero because + * Thomas R. Nicely used GMP's mpz_tdiv_q_2exp() + * and mp_div_2d() is equivalent. Additionally: + * dividing an even number by two does not produce + * any leftovers. + */ + if ((e = mp_div_2d(&Np1, s, &Dz, NULL)) != MP_OKAY) { + goto LBL_LS_ERR; + } + /* We must now compute U_d and V_d. Since d is odd, the accumulated + values U and V are initialized to U_1 and V_1 (if the target + index were even, U and V would be initialized instead to U_0=0 + and V_0=2). The values of U_2m and V_2m are also initialized to + U_1 and V_1; the FOR loop calculates in succession U_2 and V_2, + U_4 and V_4, U_8 and V_8, etc. If the corresponding bits + (1, 2, 3, ...) of t are on (the zero bit having been accounted + for in the initialization of U and V), these values are then + combined with the previous totals for U and V, using the + composition formulas for addition of indices. */ + + mp_set(&Uz, 1uL); /* U=U_1 */ + mp_set(&Vz, (mp_digit)P); /* V=V_1 */ + mp_set(&U2mz, 1uL); /* U_1 */ + mp_set(&V2mz, (mp_digit)P); /* V_1 */ + + if (Q < 0) { + Q = -Q; + if ((e = mp_set_long(&Qmz, (unsigned long)Q)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + /* Initializes calculation of Q^d */ + if ((e = mp_set_long(&Qkdz, (unsigned long)Q)) != MP_OKAY) { + goto LBL_LS_ERR; + } + Qmz.sign = MP_NEG; + Q2mz.sign = MP_NEG; + Qkdz.sign = MP_NEG; + Q = -Q; + } else { + if ((e = mp_set_long(&Qmz, (unsigned long)Q)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + /* Initializes calculation of Q^d */ + if ((e = mp_set_long(&Qkdz, (unsigned long)Q)) != MP_OKAY) { + goto LBL_LS_ERR; + } + } + + Nbits = mp_count_bits(&Dz); + + for (u = 1; u < Nbits; u++) { /* zero bit off, already accounted for */ + /* Formulas for doubling of indices (carried out mod N). Note that + * the indices denoted as "2m" are actually powers of 2, specifically + * 2^(ul-1) beginning each loop and 2^ul ending each loop. + * + * U_2m = U_m*V_m + * V_2m = V_m*V_m - 2*Q^m + */ + + if ((e = mp_mul(&U2mz, &V2mz, &U2mz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if ((e = mp_mod(&U2mz, a, &U2mz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if ((e = mp_sqr(&V2mz, &V2mz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if ((e = mp_sub(&V2mz, &Q2mz, &V2mz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if ((e = mp_mod(&V2mz, a, &V2mz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + /* Must calculate powers of Q for use in V_2m, also for Q^d later */ + if ((e = mp_sqr(&Qmz, &Qmz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + /* prevents overflow */ /* CZ still necessary without a fixed prealloc'd mem.? */ + if ((e = mp_mod(&Qmz, a, &Qmz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if ((isset = mp_get_bit(&Dz, u)) == MP_VAL) { + e = isset; + goto LBL_LS_ERR; + } + if (isset == MP_YES) { + /* Formulas for addition of indices (carried out mod N); + * + * U_(m+n) = (U_m*V_n + U_n*V_m)/2 + * V_(m+n) = (V_m*V_n + D*U_m*U_n)/2 + * + * Be careful with division by 2 (mod N)! + */ + if ((e = mp_mul(&U2mz, &Vz, &T1z)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if ((e = mp_mul(&Uz, &V2mz, &T2z)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if ((e = mp_mul(&V2mz, &Vz, &T3z)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if ((e = mp_mul(&U2mz, &Uz, &T4z)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if ((e = s_mp_mul_si(&T4z, (long)Ds, &T4z)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if ((e = mp_add(&T1z, &T2z, &Uz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if (mp_isodd(&Uz) != MP_NO) { + if ((e = mp_add(&Uz, a, &Uz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + } + /* CZ + * This should round towards negative infinity because + * Thomas R. Nicely used GMP's mpz_fdiv_q_2exp(). + * But mp_div_2() does not do so, it is truncating instead. + */ + oddness = mp_isodd(&Uz); + if ((e = mp_div_2(&Uz, &Uz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if ((Uz.sign == MP_NEG) && (oddness != MP_NO)) { + if ((e = mp_sub_d(&Uz, 1uL, &Uz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + } + if ((e = mp_add(&T3z, &T4z, &Vz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if (mp_isodd(&Vz) != MP_NO) { + if ((e = mp_add(&Vz, a, &Vz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + } + oddness = mp_isodd(&Vz); + if ((e = mp_div_2(&Vz, &Vz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if ((Vz.sign == MP_NEG) && (oddness != MP_NO)) { + if ((e = mp_sub_d(&Vz, 1uL, &Vz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + } + if ((e = mp_mod(&Uz, a, &Uz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if ((e = mp_mod(&Vz, a, &Vz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + /* Calculating Q^d for later use */ + if ((e = mp_mul(&Qkdz, &Qmz, &Qkdz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if ((e = mp_mod(&Qkdz, a, &Qkdz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + } + } + + /* If U_d or V_d is congruent to 0 mod N, then N is a prime or a + strong Lucas pseudoprime. */ + if ((mp_iszero(&Uz) != MP_NO) || (mp_iszero(&Vz) != MP_NO)) { + *result = MP_YES; + goto LBL_LS_ERR; + } + + /* NOTE: Ribenboim ("The new book of prime number records," 3rd ed., + 1995/6) omits the condition V0 on p.142, but includes it on + p. 130. The condition is NECESSARY; otherwise the test will + return false negatives---e.g., the primes 29 and 2000029 will be + returned as composite. */ + + /* Otherwise, we must compute V_2d, V_4d, V_8d, ..., V_{2^(s-1)*d} + by repeated use of the formula V_2m = V_m*V_m - 2*Q^m. If any of + these are congruent to 0 mod N, then N is a prime or a strong + Lucas pseudoprime. */ + + /* Initialize 2*Q^(d*2^r) for V_2m */ + if ((e = mp_mul_2(&Qkdz, &Q2kdz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + + for (r = 1; r < s; r++) { + if ((e = mp_sqr(&Vz, &Vz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if ((e = mp_sub(&Vz, &Q2kdz, &Vz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if ((e = mp_mod(&Vz, a, &Vz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if (mp_iszero(&Vz) != MP_NO) { + *result = MP_YES; + goto LBL_LS_ERR; + } + /* Calculate Q^{d*2^r} for next r (final iteration irrelevant). */ + if (r < (s - 1)) { + if ((e = mp_sqr(&Qkdz, &Qkdz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if ((e = mp_mod(&Qkdz, a, &Qkdz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + if ((e = mp_mul_2(&Qkdz, &Q2kdz)) != MP_OKAY) { + goto LBL_LS_ERR; + } + } + } +LBL_LS_ERR: + mp_clear_multi(&Q2kdz, &T4z, &T3z, &T2z, &T1z, &Qkdz, &Q2mz, &Qmz, &V2mz, &U2mz, &Vz, &Uz, &Np1, &gcd, &Dz, NULL); + return e; +} +#endif +#endif +#endif + +/* ref: HEAD -> master, tag: v1.1.0 */ +/* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ +/* commit time: 2019-01-28 20:32:32 +0100 */ |