diff options
author | Matt Johnston <matt@ucc.asn.au> | 2006-03-08 13:23:49 +0000 |
---|---|---|
committer | Matt Johnston <matt@ucc.asn.au> | 2006-03-08 13:23:49 +0000 |
commit | 8608a8e64c1aeda096867f43f89e29e1aee207ae (patch) | |
tree | 453ebf8873dd287a2def6a674d42afcc6637cde2 /libtommath/bn_mp_is_square.c | |
parent | 2481693cf23dba90c693762a528d2923cde9c9cc (diff) | |
parent | 882a9ced901348b3a48023443bfd23e0ef9d9b67 (diff) |
propagate from branch 'au.asn.ucc.matt.ltm.dropbear' (head 6c790cad5a7fa866ad062cb3a0c279f7ba788583)
to branch 'au.asn.ucc.matt.dropbear' (head fff0894a0399405a9410ea1c6d118f342cf2aa64)
--HG--
extra : convert_revision : fdf4a7a3b97ae5046139915de7e40399cceb2c01
Diffstat (limited to 'libtommath/bn_mp_is_square.c')
-rw-r--r-- | libtommath/bn_mp_is_square.c | 105 |
1 files changed, 105 insertions, 0 deletions
diff --git a/libtommath/bn_mp_is_square.c b/libtommath/bn_mp_is_square.c new file mode 100644 index 0000000..969d237 --- /dev/null +++ b/libtommath/bn_mp_is_square.c @@ -0,0 +1,105 @@ +#include <tommath.h> +#ifdef BN_MP_IS_SQUARE_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org + */ + +/* Check if remainders are possible squares - fast exclude non-squares */ +static const char rem_128[128] = { + 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, + 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, + 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, + 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, + 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, + 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, + 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, + 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1 +}; + +static const char rem_105[105] = { + 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, + 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, + 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, + 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, + 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, + 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, + 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1 +}; + +/* Store non-zero to ret if arg is square, and zero if not */ +int mp_is_square(mp_int *arg,int *ret) +{ + int res; + mp_digit c; + mp_int t; + unsigned long r; + + /* Default to Non-square :) */ + *ret = MP_NO; + + if (arg->sign == MP_NEG) { + return MP_VAL; + } + + /* digits used? (TSD) */ + if (arg->used == 0) { + return MP_OKAY; + } + + /* First check mod 128 (suppose that DIGIT_BIT is at least 7) */ + if (rem_128[127 & DIGIT(arg,0)] == 1) { + return MP_OKAY; + } + + /* Next check mod 105 (3*5*7) */ + if ((res = mp_mod_d(arg,105,&c)) != MP_OKAY) { + return res; + } + if (rem_105[c] == 1) { + return MP_OKAY; + } + + + if ((res = mp_init_set_int(&t,11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) { + return res; + } + if ((res = mp_mod(arg,&t,&t)) != MP_OKAY) { + goto ERR; + } + r = mp_get_int(&t); + /* Check for other prime modules, note it's not an ERROR but we must + * free "t" so the easiest way is to goto ERR. We know that res + * is already equal to MP_OKAY from the mp_mod call + */ + if ( (1L<<(r%11)) & 0x5C4L ) goto ERR; + if ( (1L<<(r%13)) & 0x9E4L ) goto ERR; + if ( (1L<<(r%17)) & 0x5CE8L ) goto ERR; + if ( (1L<<(r%19)) & 0x4F50CL ) goto ERR; + if ( (1L<<(r%23)) & 0x7ACCA0L ) goto ERR; + if ( (1L<<(r%29)) & 0xC2EDD0CL ) goto ERR; + if ( (1L<<(r%31)) & 0x6DE2B848L ) goto ERR; + + /* Final check - is sqr(sqrt(arg)) == arg ? */ + if ((res = mp_sqrt(arg,&t)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_sqr(&t,&t)) != MP_OKAY) { + goto ERR; + } + + *ret = (mp_cmp_mag(&t,arg) == MP_EQ) ? MP_YES : MP_NO; +ERR:mp_clear(&t); + return res; +} +#endif |