summaryrefslogtreecommitdiffhomepage
path: root/libtomcrypt/src/ciphers/rc5.c
diff options
context:
space:
mode:
authorMatt Johnston <matt@ucc.asn.au>2007-01-11 03:14:55 +0000
committerMatt Johnston <matt@ucc.asn.au>2007-01-11 03:14:55 +0000
commit9d5ed350a749368c84254c11e7616ce3c891193a (patch)
tree6dacbff2e9f5c60a1568382db55c72dd6d2ce925 /libtomcrypt/src/ciphers/rc5.c
parentca52f070aecf91e75f6ae6c87d4ae1a2189ccb14 (diff)
parent5ea605d8de5b4438deb4fa86c5231710dd09f934 (diff)
propagate from branch 'au.asn.ucc.matt.ltm.dropbear' (head 2af95f00ebd5bb7a28b3817db1218442c935388e)
to branch 'au.asn.ucc.matt.dropbear' (head ecd779509ef23a8cdf64888904fc9b31d78aa933) --HG-- extra : convert_revision : d26d5eb2837f46b56a33fb0e7573aa0201abd4d5
Diffstat (limited to 'libtomcrypt/src/ciphers/rc5.c')
-rw-r--r--libtomcrypt/src/ciphers/rc5.c322
1 files changed, 322 insertions, 0 deletions
diff --git a/libtomcrypt/src/ciphers/rc5.c b/libtomcrypt/src/ciphers/rc5.c
new file mode 100644
index 0000000..2d5fdb8
--- /dev/null
+++ b/libtomcrypt/src/ciphers/rc5.c
@@ -0,0 +1,322 @@
+/* LibTomCrypt, modular cryptographic library -- Tom St Denis
+ *
+ * LibTomCrypt is a library that provides various cryptographic
+ * algorithms in a highly modular and flexible manner.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
+ */
+
+/**
+ @file rc5.c
+ RC5 code by Tom St Denis
+*/
+
+#include "tomcrypt.h"
+
+#ifdef RC5
+
+const struct ltc_cipher_descriptor rc5_desc =
+{
+ "rc5",
+ 2,
+ 8, 128, 8, 12,
+ &rc5_setup,
+ &rc5_ecb_encrypt,
+ &rc5_ecb_decrypt,
+ &rc5_test,
+ &rc5_done,
+ &rc5_keysize,
+ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
+};
+
+static const ulong32 stab[50] = {
+0xb7e15163UL, 0x5618cb1cUL, 0xf45044d5UL, 0x9287be8eUL, 0x30bf3847UL, 0xcef6b200UL, 0x6d2e2bb9UL, 0x0b65a572UL,
+0xa99d1f2bUL, 0x47d498e4UL, 0xe60c129dUL, 0x84438c56UL, 0x227b060fUL, 0xc0b27fc8UL, 0x5ee9f981UL, 0xfd21733aUL,
+0x9b58ecf3UL, 0x399066acUL, 0xd7c7e065UL, 0x75ff5a1eUL, 0x1436d3d7UL, 0xb26e4d90UL, 0x50a5c749UL, 0xeedd4102UL,
+0x8d14babbUL, 0x2b4c3474UL, 0xc983ae2dUL, 0x67bb27e6UL, 0x05f2a19fUL, 0xa42a1b58UL, 0x42619511UL, 0xe0990ecaUL,
+0x7ed08883UL, 0x1d08023cUL, 0xbb3f7bf5UL, 0x5976f5aeUL, 0xf7ae6f67UL, 0x95e5e920UL, 0x341d62d9UL, 0xd254dc92UL,
+0x708c564bUL, 0x0ec3d004UL, 0xacfb49bdUL, 0x4b32c376UL, 0xe96a3d2fUL, 0x87a1b6e8UL, 0x25d930a1UL, 0xc410aa5aUL,
+0x62482413UL, 0x007f9dccUL
+};
+
+ /**
+ Initialize the RC5 block cipher
+ @param key The symmetric key you wish to pass
+ @param keylen The key length in bytes
+ @param num_rounds The number of rounds desired (0 for default)
+ @param skey The key in as scheduled by this function.
+ @return CRYPT_OK if successful
+ */
+#ifdef LTC_CLEAN_STACK
+static int _rc5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
+#else
+int rc5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
+#endif
+{
+ ulong32 L[64], *S, A, B, i, j, v, s, t, l;
+
+ LTC_ARGCHK(skey != NULL);
+ LTC_ARGCHK(key != NULL);
+
+ /* test parameters */
+ if (num_rounds == 0) {
+ num_rounds = rc5_desc.default_rounds;
+ }
+
+ if (num_rounds < 12 || num_rounds > 24) {
+ return CRYPT_INVALID_ROUNDS;
+ }
+
+ /* key must be between 64 and 1024 bits */
+ if (keylen < 8 || keylen > 128) {
+ return CRYPT_INVALID_KEYSIZE;
+ }
+
+ skey->rc5.rounds = num_rounds;
+ S = skey->rc5.K;
+
+ /* copy the key into the L array */
+ for (A = i = j = 0; i < (ulong32)keylen; ) {
+ A = (A << 8) | ((ulong32)(key[i++] & 255));
+ if ((i & 3) == 0) {
+ L[j++] = BSWAP(A);
+ A = 0;
+ }
+ }
+
+ if ((keylen & 3) != 0) {
+ A <<= (ulong32)((8 * (4 - (keylen&3))));
+ L[j++] = BSWAP(A);
+ }
+
+ /* setup the S array */
+ t = (ulong32)(2 * (num_rounds + 1));
+ XMEMCPY(S, stab, t * sizeof(*S));
+
+ /* mix buffer */
+ s = 3 * MAX(t, j);
+ l = j;
+ for (A = B = i = j = v = 0; v < s; v++) {
+ A = S[i] = ROLc(S[i] + A + B, 3);
+ B = L[j] = ROL(L[j] + A + B, (A+B));
+ if (++i == t) { i = 0; }
+ if (++j == l) { j = 0; }
+ }
+ return CRYPT_OK;
+}
+
+#ifdef LTC_CLEAN_STACK
+int rc5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
+{
+ int x;
+ x = _rc5_setup(key, keylen, num_rounds, skey);
+ burn_stack(sizeof(ulong32) * 122 + sizeof(int));
+ return x;
+}
+#endif
+
+/**
+ Encrypts a block of text with RC5
+ @param pt The input plaintext (8 bytes)
+ @param ct The output ciphertext (8 bytes)
+ @param skey The key as scheduled
+ @return CRYPT_OK if successful
+*/
+#ifdef LTC_CLEAN_STACK
+static int _rc5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
+#else
+int rc5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
+#endif
+{
+ ulong32 A, B, *K;
+ int r;
+ LTC_ARGCHK(skey != NULL);
+ LTC_ARGCHK(pt != NULL);
+ LTC_ARGCHK(ct != NULL);
+
+ LOAD32L(A, &pt[0]);
+ LOAD32L(B, &pt[4]);
+ A += skey->rc5.K[0];
+ B += skey->rc5.K[1];
+ K = skey->rc5.K + 2;
+
+ if ((skey->rc5.rounds & 1) == 0) {
+ for (r = 0; r < skey->rc5.rounds; r += 2) {
+ A = ROL(A ^ B, B) + K[0];
+ B = ROL(B ^ A, A) + K[1];
+ A = ROL(A ^ B, B) + K[2];
+ B = ROL(B ^ A, A) + K[3];
+ K += 4;
+ }
+ } else {
+ for (r = 0; r < skey->rc5.rounds; r++) {
+ A = ROL(A ^ B, B) + K[0];
+ B = ROL(B ^ A, A) + K[1];
+ K += 2;
+ }
+ }
+ STORE32L(A, &ct[0]);
+ STORE32L(B, &ct[4]);
+
+ return CRYPT_OK;
+}
+
+#ifdef LTC_CLEAN_STACK
+int rc5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
+{
+ int err = _rc5_ecb_encrypt(pt, ct, skey);
+ burn_stack(sizeof(ulong32) * 2 + sizeof(int));
+ return err;
+}
+#endif
+
+/**
+ Decrypts a block of text with RC5
+ @param ct The input ciphertext (8 bytes)
+ @param pt The output plaintext (8 bytes)
+ @param skey The key as scheduled
+ @return CRYPT_OK if successful
+*/
+#ifdef LTC_CLEAN_STACK
+static int _rc5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
+#else
+int rc5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
+#endif
+{
+ ulong32 A, B, *K;
+ int r;
+ LTC_ARGCHK(skey != NULL);
+ LTC_ARGCHK(pt != NULL);
+ LTC_ARGCHK(ct != NULL);
+
+ LOAD32L(A, &ct[0]);
+ LOAD32L(B, &ct[4]);
+ K = skey->rc5.K + (skey->rc5.rounds << 1);
+
+ if ((skey->rc5.rounds & 1) == 0) {
+ K -= 2;
+ for (r = skey->rc5.rounds - 1; r >= 0; r -= 2) {
+ B = ROR(B - K[3], A) ^ A;
+ A = ROR(A - K[2], B) ^ B;
+ B = ROR(B - K[1], A) ^ A;
+ A = ROR(A - K[0], B) ^ B;
+ K -= 4;
+ }
+ } else {
+ for (r = skey->rc5.rounds - 1; r >= 0; r--) {
+ B = ROR(B - K[1], A) ^ A;
+ A = ROR(A - K[0], B) ^ B;
+ K -= 2;
+ }
+ }
+ A -= skey->rc5.K[0];
+ B -= skey->rc5.K[1];
+ STORE32L(A, &pt[0]);
+ STORE32L(B, &pt[4]);
+
+ return CRYPT_OK;
+}
+
+#ifdef LTC_CLEAN_STACK
+int rc5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
+{
+ int err = _rc5_ecb_decrypt(ct, pt, skey);
+ burn_stack(sizeof(ulong32) * 2 + sizeof(int));
+ return err;
+}
+#endif
+
+/**
+ Performs a self-test of the RC5 block cipher
+ @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
+*/
+int rc5_test(void)
+{
+ #ifndef LTC_TEST
+ return CRYPT_NOP;
+ #else
+ static const struct {
+ unsigned char key[16], pt[8], ct[8];
+ } tests[] = {
+ {
+ { 0x91, 0x5f, 0x46, 0x19, 0xbe, 0x41, 0xb2, 0x51,
+ 0x63, 0x55, 0xa5, 0x01, 0x10, 0xa9, 0xce, 0x91 },
+ { 0x21, 0xa5, 0xdb, 0xee, 0x15, 0x4b, 0x8f, 0x6d },
+ { 0xf7, 0xc0, 0x13, 0xac, 0x5b, 0x2b, 0x89, 0x52 }
+ },
+ {
+ { 0x78, 0x33, 0x48, 0xe7, 0x5a, 0xeb, 0x0f, 0x2f,
+ 0xd7, 0xb1, 0x69, 0xbb, 0x8d, 0xc1, 0x67, 0x87 },
+ { 0xF7, 0xC0, 0x13, 0xAC, 0x5B, 0x2B, 0x89, 0x52 },
+ { 0x2F, 0x42, 0xB3, 0xB7, 0x03, 0x69, 0xFC, 0x92 }
+ },
+ {
+ { 0xDC, 0x49, 0xdb, 0x13, 0x75, 0xa5, 0x58, 0x4f,
+ 0x64, 0x85, 0xb4, 0x13, 0xb5, 0xf1, 0x2b, 0xaf },
+ { 0x2F, 0x42, 0xB3, 0xB7, 0x03, 0x69, 0xFC, 0x92 },
+ { 0x65, 0xc1, 0x78, 0xb2, 0x84, 0xd1, 0x97, 0xcc }
+ }
+ };
+ unsigned char tmp[2][8];
+ int x, y, err;
+ symmetric_key key;
+
+ for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
+ /* setup key */
+ if ((err = rc5_setup(tests[x].key, 16, 12, &key)) != CRYPT_OK) {
+ return err;
+ }
+
+ /* encrypt and decrypt */
+ rc5_ecb_encrypt(tests[x].pt, tmp[0], &key);
+ rc5_ecb_decrypt(tmp[0], tmp[1], &key);
+
+ /* compare */
+ if (XMEMCMP(tmp[0], tests[x].ct, 8) != 0 || XMEMCMP(tmp[1], tests[x].pt, 8) != 0) {
+ return CRYPT_FAIL_TESTVECTOR;
+ }
+
+ /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
+ for (y = 0; y < 8; y++) tmp[0][y] = 0;
+ for (y = 0; y < 1000; y++) rc5_ecb_encrypt(tmp[0], tmp[0], &key);
+ for (y = 0; y < 1000; y++) rc5_ecb_decrypt(tmp[0], tmp[0], &key);
+ for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
+ }
+ return CRYPT_OK;
+ #endif
+}
+
+/** Terminate the context
+ @param skey The scheduled key
+*/
+void rc5_done(symmetric_key *skey)
+{
+}
+
+/**
+ Gets suitable key size
+ @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
+ @return CRYPT_OK if the input key size is acceptable.
+*/
+int rc5_keysize(int *keysize)
+{
+ LTC_ARGCHK(keysize != NULL);
+ if (*keysize < 8) {
+ return CRYPT_INVALID_KEYSIZE;
+ } else if (*keysize > 128) {
+ *keysize = 128;
+ }
+ return CRYPT_OK;
+}
+
+#endif
+
+
+
+
+/* $Source: /cvs/libtom/libtomcrypt/src/ciphers/rc5.c,v $ */
+/* $Revision: 1.12 $ */
+/* $Date: 2006/11/08 23:01:06 $ */