summaryrefslogtreecommitdiffhomepage
path: root/networking/tls_sp_c32.c
blob: d3bb36a39d3272a2e6eab15dd327f1807f8dce07 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
/*
 * Copyright (C) 2021 Denys Vlasenko
 *
 * Licensed under GPLv2, see file LICENSE in this source tree.
 */
#include "tls.h"

#define SP_DEBUG          0
#define FIXED_SECRET      0
#define FIXED_PEER_PUBKEY 0

#if SP_DEBUG
# define dbg(...) fprintf(stderr, __VA_ARGS__)
static void dump_hex(const char *fmt, const void *vp, int len)
{
	char hexbuf[32 * 1024 + 4];
	const uint8_t *p = vp;

	bin2hex(hexbuf, (void*)p, len)[0] = '\0';
	dbg(fmt, hexbuf);
}
#else
# define dbg(...) ((void)0)
# define dump_hex(...) ((void)0)
#endif

#undef DIGIT_BIT
#define DIGIT_BIT  32
typedef int32_t sp_digit;

/* The code below is taken from parts of
 *  wolfssl-3.15.3/wolfcrypt/src/sp_c32.c
 * and heavily modified.
 * Header comment is kept intact:
 */

/* sp.c
 *
 * Copyright (C) 2006-2018 wolfSSL Inc.
 *
 * This file is part of wolfSSL.
 *
 * wolfSSL is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * wolfSSL is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
 */

/* Implementation by Sean Parkinson. */

typedef struct sp_point {
	sp_digit x[2 * 10];
	sp_digit y[2 * 10];
	sp_digit z[2 * 10];
	int infinity;
} sp_point;

/* The modulus (prime) of the curve P256. */
static const sp_digit p256_mod[10] = {
	0x3ffffff,0x3ffffff,0x3ffffff,0x003ffff,0x0000000,
	0x0000000,0x0000000,0x0000400,0x3ff0000,0x03fffff,
};

#define p256_mp_mod ((sp_digit)0x000001)

/* The base point of curve P256. */
static const sp_point p256_base = {
	/* X ordinate */
	{ 0x098c296,0x04e5176,0x33a0f4a,0x204b7ac,0x277037d,0x0e9103c,0x3ce6e56,0x1091fe2,0x1f2e12c,0x01ac5f4 },
	/* Y ordinate */
	{ 0x3bf51f5,0x1901a0d,0x1ececbb,0x15dacc5,0x22bce33,0x303e785,0x27eb4a7,0x1fe6e3b,0x2e2fe1a,0x013f8d0 },
	/* Z ordinate */
	{ 0x0000001,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000 },
	/* infinity */
	0
};

/* Write r as big endian to byte aray.
 * Fixed length number of bytes written: 32
 *
 * r  A single precision integer.
 * a  Byte array.
 */
static void sp_256_to_bin(sp_digit* r, uint8_t* a)
{
    int i, j, s = 0, b;

    for (i = 0; i < 9; i++) {
        r[i+1] += r[i] >> 26;
        r[i] &= 0x3ffffff;
    }
    j = 256 / 8 - 1;
    a[j] = 0;
    for (i=0; i<10 && j>=0; i++) {
        b = 0;
        a[j--] |= r[i] << s; b += 8 - s;
        if (j < 0)
            break;
        while (b < 26) {
            a[j--] = r[i] >> b; b += 8;
            if (j < 0)
                break;
        }
        s = 8 - (b - 26);
        if (j >= 0)
            a[j] = 0;
        if (s != 0)
            j++;
    }
}

/* Read big endian unsigned byte aray into r.
 *
 * r  A single precision integer.
 * a  Byte array.
 * n  Number of bytes in array to read.
 */
static void sp_256_from_bin(sp_digit* r, int max, const uint8_t* a, int n)
{
    int i, j = 0, s = 0;

    r[0] = 0;
    for (i = n-1; i >= 0; i--) {
        r[j] |= ((sp_digit)a[i]) << s;
        if (s >= 18) {
            r[j] &= 0x3ffffff;
            s = 26 - s;
            if (j + 1 >= max)
                break;
            r[++j] = a[i] >> s;
            s = 8 - s;
        }
        else
            s += 8;
    }

    for (j++; j < max; j++)
        r[j] = 0;
}

/* Convert a point of big-endian 32-byte x,y pair to type sp_point. */
static void sp_256_point_from_bin2x32(sp_point* p, const uint8_t *bin2x32)
{
    memset(p, 0, sizeof(*p));
    /*p->infinity = 0;*/
    sp_256_from_bin(p->x, 2 * 10, bin2x32, 32);
    sp_256_from_bin(p->y, 2 * 10, bin2x32 + 32, 32);
    //static const uint8_t one[1] = { 1 };
    //sp_256_from_bin(p->z, 2 * 10, one, 1);
    p->z[0] = 1;
}

/* Compare a with b in constant time.
 *
 * return -ve, 0 or +ve if a is less than, equal to or greater than b
 * respectively.
 */
static sp_digit sp_256_cmp_10(const sp_digit* a, const sp_digit* b)
{
    sp_digit r = 0;
    int i;
    for (i = 9; i >= 0; i--)
        r |= (a[i] - b[i]) & (0 - !r);
    return r;
}

/* Compare two numbers to determine if they are equal.
 *
 * return 1 when equal and 0 otherwise.
 */
static int sp_256_cmp_equal_10(const sp_digit* a, const sp_digit* b)
{
#if 1
    sp_digit r = 0;
    int i;
    for (i = 0; i < 10; i++)
        r |= (a[i] ^ b[i]);
    return r == 0;
#else
    return sp_256_cmp_10(a, b) == 0;
#endif
}

/* Normalize the values in each word to 26 bits. */
static void sp_256_norm_10(sp_digit* a)
{
    int i;
    for (i = 0; i < 9; i++) {
        a[i+1] += a[i] >> 26;
        a[i] &= 0x3ffffff;
    }
}

/* Add b to a into r. (r = a + b) */
static void sp_256_add_10(sp_digit* r, const sp_digit* a, const sp_digit* b)
{
    int i;
    for (i = 0; i < 10; i++)
        r[i] = a[i] + b[i];
}

/* Conditionally add a and b using the mask m.
 * m is -1 to add and 0 when not.
 */
static void sp_256_cond_add_10(sp_digit* r, const sp_digit* a,
        const sp_digit* b, const sp_digit m)
{
    int i;
    for (i = 0; i < 10; i++)
        r[i] = a[i] + (b[i] & m);
}

/* Conditionally subtract b from a using the mask m.
 * m is -1 to subtract and 0 when not.
 */
static void sp_256_cond_sub_10(sp_digit* r, const sp_digit* a,
        const sp_digit* b, const sp_digit m)
{
    int i;
    for (i = 0; i < 10; i++)
        r[i] = a[i] - (b[i] & m);
}

/* Shift number left one bit. Bottom bit is lost. */
static void sp_256_rshift1_10(sp_digit* r, sp_digit* a)
{
    int i;
    for (i = 0; i < 9; i++)
        r[i] = ((a[i] >> 1) | (a[i + 1] << 25)) & 0x3ffffff;
    r[9] = a[9] >> 1;
}

/* Multiply a number by Montogmery normalizer mod modulus (prime).
 *
 * r  The resulting Montgomery form number.
 * a  The number to convert.
 */
static void sp_256_mod_mul_norm_10(sp_digit* r, const sp_digit* a)
{
    int64_t t[8];
    int64_t a32[8];
    int64_t o;

    a32[0] = a[0];
    a32[0] |= a[1] << 26;
    a32[0] &= 0xffffffff;
    a32[1] = (sp_digit)(a[1] >> 6);
    a32[1] |= a[2] << 20;
    a32[1] &= 0xffffffff;
    a32[2] = (sp_digit)(a[2] >> 12);
    a32[2] |= a[3] << 14;
    a32[2] &= 0xffffffff;
    a32[3] = (sp_digit)(a[3] >> 18);
    a32[3] |= a[4] << 8;
    a32[3] &= 0xffffffff;
    a32[4] = (sp_digit)(a[4] >> 24);
    a32[4] |= a[5] << 2;
    a32[4] |= a[6] << 28;
    a32[4] &= 0xffffffff;
    a32[5] = (sp_digit)(a[6] >> 4);
    a32[5] |= a[7] << 22;
    a32[5] &= 0xffffffff;
    a32[6] = (sp_digit)(a[7] >> 10);
    a32[6] |= a[8] << 16;
    a32[6] &= 0xffffffff;
    a32[7] = (sp_digit)(a[8] >> 16);
    a32[7] |= a[9] << 10;
    a32[7] &= 0xffffffff;

    /*  1  1  0 -1 -1 -1 -1  0 */
    t[0] = 0 + a32[0] + a32[1] - a32[3] - a32[4] - a32[5] - a32[6];
    /*  0  1  1  0 -1 -1 -1 -1 */
    t[1] = 0 + a32[1] + a32[2] - a32[4] - a32[5] - a32[6] - a32[7];
    /*  0  0  1  1  0 -1 -1 -1 */
    t[2] = 0 + a32[2] + a32[3] - a32[5] - a32[6] - a32[7];
    /* -1 -1  0  2  2  1  0 -1 */
    t[3] = 0 - a32[0] - a32[1] + 2 * a32[3] + 2 * a32[4] + a32[5] - a32[7];
    /*  0 -1 -1  0  2  2  1  0 */
    t[4] = 0 - a32[1] - a32[2] + 2 * a32[4] + 2 * a32[5] + a32[6];
    /*  0  0 -1 -1  0  2  2  1 */
    t[5] = 0 - a32[2] - a32[3] + 2 * a32[5] + 2 * a32[6] + a32[7];
    /* -1 -1  0  0  0  1  3  2 */
    t[6] = 0 - a32[0] - a32[1] + a32[5] + 3 * a32[6] + 2 * a32[7];
    /*  1  0 -1 -1 -1 -1  0  3 */
    t[7] = 0 + a32[0] - a32[2] - a32[3] - a32[4] - a32[5] + 3 * a32[7];

    t[1] += t[0] >> 32; t[0] &= 0xffffffff;
    t[2] += t[1] >> 32; t[1] &= 0xffffffff;
    t[3] += t[2] >> 32; t[2] &= 0xffffffff;
    t[4] += t[3] >> 32; t[3] &= 0xffffffff;
    t[5] += t[4] >> 32; t[4] &= 0xffffffff;
    t[6] += t[5] >> 32; t[5] &= 0xffffffff;
    t[7] += t[6] >> 32; t[6] &= 0xffffffff;
    o     = t[7] >> 32; t[7] &= 0xffffffff;
    t[0] += o;
    t[3] -= o;
    t[6] -= o;
    t[7] += o;
    t[1] += t[0] >> 32; t[0] &= 0xffffffff;
    t[2] += t[1] >> 32; t[1] &= 0xffffffff;
    t[3] += t[2] >> 32; t[2] &= 0xffffffff;
    t[4] += t[3] >> 32; t[3] &= 0xffffffff;
    t[5] += t[4] >> 32; t[4] &= 0xffffffff;
    t[6] += t[5] >> 32; t[5] &= 0xffffffff;
    t[7] += t[6] >> 32; t[6] &= 0xffffffff;

    r[0] = (sp_digit)(t[0]) & 0x3ffffff;
    r[1] = (sp_digit)(t[0] >> 26);
    r[1] |= t[1] << 6;
    r[1] &= 0x3ffffff;
    r[2] = (sp_digit)(t[1] >> 20);
    r[2] |= t[2] << 12;
    r[2] &= 0x3ffffff;
    r[3] = (sp_digit)(t[2] >> 14);
    r[3] |= t[3] << 18;
    r[3] &= 0x3ffffff;
    r[4] = (sp_digit)(t[3] >> 8);
    r[4] |= t[4] << 24;
    r[4] &= 0x3ffffff;
    r[5] = (sp_digit)(t[4] >> 2) & 0x3ffffff;
    r[6] = (sp_digit)(t[4] >> 28);
    r[6] |= t[5] << 4;
    r[6] &= 0x3ffffff;
    r[7] = (sp_digit)(t[5] >> 22);
    r[7] |= t[6] << 10;
    r[7] &= 0x3ffffff;
    r[8] = (sp_digit)(t[6] >> 16);
    r[8] |= t[7] << 16;
    r[8] &= 0x3ffffff;
    r[9] = (sp_digit)(t[7] >> 10);
}

/* Mul a by scalar b and add into r. (r += a * b) */
static void sp_256_mul_add_10(sp_digit* r, const sp_digit* a, sp_digit b)
{
    int64_t tb = b;
    int64_t t = 0;
    int i;

    for (i = 0; i < 10; i++) {
        t += (tb * a[i]) + r[i];
        r[i] = t & 0x3ffffff;
        t >>= 26;
    }
    r[10] += t;
}

/* Divide the number by 2 mod the modulus (prime). (r = a / 2 % m) */
static void sp_256_div2_10(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
    sp_256_cond_add_10(r, a, m, 0 - (a[0] & 1));
    sp_256_norm_10(r);
    sp_256_rshift1_10(r, r);
}

/* Shift the result in the high 256 bits down to the bottom. */
static void sp_256_mont_shift_10(sp_digit* r, const sp_digit* a)
{
    int i;
    sp_digit n, s;

    s = a[10];
    n = a[9] >> 22;
    for (i = 0; i < 9; i++) {
        n += (s & 0x3ffffff) << 4;
        r[i] = n & 0x3ffffff;
        n >>= 26;
        s = a[11 + i] + (s >> 26);
    }
    n += s << 4;
    r[9] = n;
    memset(&r[10], 0, sizeof(*r) * 10);
}

/* Add two Montgomery form numbers (r = a + b % m) */
static void sp_256_mont_add_10(sp_digit* r, const sp_digit* a, const sp_digit* b,
        const sp_digit* m)
{
    sp_256_add_10(r, a, b);
    sp_256_norm_10(r);
    sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0));
    sp_256_norm_10(r);
}

/* Double a Montgomery form number (r = a + a % m) */
static void sp_256_mont_dbl_10(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
    sp_256_add_10(r, a, a);
    sp_256_norm_10(r);
    sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0));
    sp_256_norm_10(r);
}

/* Triple a Montgomery form number (r = a + a + a % m) */
static void sp_256_mont_tpl_10(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
    sp_256_add_10(r, a, a);
    sp_256_norm_10(r);
    sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0));
    sp_256_norm_10(r);
    sp_256_add_10(r, r, a);
    sp_256_norm_10(r);
    sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0));
    sp_256_norm_10(r);
}

/* Sub b from a into r. (r = a - b) */
static void sp_256_sub_10(sp_digit* r, const sp_digit* a, const sp_digit* b)
{
    int i;
    for (i = 0; i < 10; i++)
        r[i] = a[i] - b[i];
}

/* Subtract two Montgomery form numbers (r = a - b % m) */
static void sp_256_mont_sub_10(sp_digit* r, const sp_digit* a, const sp_digit* b,
        const sp_digit* m)
{
    sp_256_sub_10(r, a, b);
    sp_256_cond_add_10(r, r, m, r[9] >> 22);
    sp_256_norm_10(r);
}

/* Reduce the number back to 256 bits using Montgomery reduction.
 *
 * a   A single precision number to reduce in place.
 * m   The single precision number representing the modulus.
 * mp  The digit representing the negative inverse of m mod 2^n.
 */
static void sp_256_mont_reduce_10(sp_digit* a, const sp_digit* m, sp_digit mp)
{
    int i;
    sp_digit mu;

    if (mp != 1) {
        for (i = 0; i < 9; i++) {
            mu = (a[i] * mp) & 0x3ffffff;
            sp_256_mul_add_10(a+i, m, mu);
            a[i+1] += a[i] >> 26;
        }
        mu = (a[i] * mp) & 0x3fffffl;
        sp_256_mul_add_10(a+i, m, mu);
        a[i+1] += a[i] >> 26;
        a[i] &= 0x3ffffff;
    }
    else {
        for (i = 0; i < 9; i++) {
            mu = a[i] & 0x3ffffff;
            sp_256_mul_add_10(a+i, p256_mod, mu);
            a[i+1] += a[i] >> 26;
        }
        mu = a[i] & 0x3fffffl;
        sp_256_mul_add_10(a+i, p256_mod, mu);
        a[i+1] += a[i] >> 26;
        a[i] &= 0x3ffffff;
    }

    sp_256_mont_shift_10(a, a);
    sp_256_cond_sub_10(a, a, m, 0 - ((a[9] >> 22) > 0));
    sp_256_norm_10(a);
}

/* Multiply a and b into r. (r = a * b) */
static void sp_256_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b)
{
    int i, j, k;
    int64_t c;

    c = ((int64_t)a[9]) * b[9];
    r[19] = (sp_digit)(c >> 26);
    c = (c & 0x3ffffff) << 26;
    for (k = 17; k >= 0; k--) {
        for (i = 9; i >= 0; i--) {
            j = k - i;
            if (j >= 10)
                break;
            if (j < 0)
                continue;
            c += ((int64_t)a[i]) * b[j];
        }
        r[k + 2] += c >> 52;
        r[k + 1] = (c >> 26) & 0x3ffffff;
        c = (c & 0x3ffffff) << 26;
    }
    r[0] = (sp_digit)(c >> 26);
}

/* Multiply two Montogmery form numbers mod the modulus (prime).
 * (r = a * b mod m)
 *
 * r   Result of multiplication.
 * a   First number to multiply in Montogmery form.
 * b   Second number to multiply in Montogmery form.
 * m   Modulus (prime).
 * mp  Montogmery mulitplier.
 */
static void sp_256_mont_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b,
        const sp_digit* m, sp_digit mp)
{
    sp_256_mul_10(r, a, b);
    sp_256_mont_reduce_10(r, m, mp);
}

/* Square a and put result in r. (r = a * a) */
static void sp_256_sqr_10(sp_digit* r, const sp_digit* a)
{
    int i, j, k;
    int64_t c;

    c = ((int64_t)a[9]) * a[9];
    r[19] = (sp_digit)(c >> 26);
    c = (c & 0x3ffffff) << 26;
    for (k = 17; k >= 0; k--) {
        for (i = 9; i >= 0; i--) {
            j = k - i;
            if (j >= 10 || i <= j)
                break;
            if (j < 0)
                continue;

            c += ((int64_t)a[i]) * a[j] * 2;
        }
        if (i == j)
           c += ((int64_t)a[i]) * a[i];

        r[k + 2] += c >> 52;
        r[k + 1] = (c >> 26) & 0x3ffffff;
        c = (c & 0x3ffffff) << 26;
    }
    r[0] = (sp_digit)(c >> 26);
}

/* Square the Montgomery form number. (r = a * a mod m)
 *
 * r   Result of squaring.
 * a   Number to square in Montogmery form.
 * m   Modulus (prime).
 * mp  Montogmery mulitplier.
 */
static void sp_256_mont_sqr_10(sp_digit* r, const sp_digit* a, const sp_digit* m,
        sp_digit mp)
{
    sp_256_sqr_10(r, a);
    sp_256_mont_reduce_10(r, m, mp);
}

/* Invert the number, in Montgomery form, modulo the modulus (prime) of the
 * P256 curve. (r = 1 / a mod m)
 *
 * r   Inverse result.
 * a   Number to invert.
 * td  Temporary data.
 */
/* Mod-2 for the P256 curve. */
static const uint32_t p256_mod_2[8] = {
	0xfffffffd,0xffffffff,0xffffffff,0x00000000,
	0x00000000,0x00000000,0x00000001,0xffffffff,
};
static void sp_256_mont_inv_10(sp_digit* r, sp_digit* a, sp_digit* td)
{
    sp_digit* t = td;
    int i;

    memcpy(t, a, sizeof(sp_digit) * 10);
    for (i = 254; i >= 0; i--) {
        sp_256_mont_sqr_10(t, t, p256_mod, p256_mp_mod);
        if (p256_mod_2[i / 32] & ((sp_digit)1 << (i % 32)))
            sp_256_mont_mul_10(t, t, a, p256_mod, p256_mp_mod);
    }
    memcpy(r, t, sizeof(sp_digit) * 10);
}

/* Map the Montgomery form projective co-ordinate point to an affine point.
 *
 * r  Resulting affine co-ordinate point.
 * p  Montgomery form projective co-ordinate point.
 * t  Temporary ordinate data.
 */
static void sp_256_map_10(sp_point* r, sp_point* p, sp_digit* t)
{
    sp_digit* t1 = t;
    sp_digit* t2 = t + 2*10;
    int32_t n;

    sp_256_mont_inv_10(t1, p->z, t + 2*10);

    sp_256_mont_sqr_10(t2, t1, p256_mod, p256_mp_mod);
    sp_256_mont_mul_10(t1, t2, t1, p256_mod, p256_mp_mod);

    /* x /= z^2 */
    sp_256_mont_mul_10(r->x, p->x, t2, p256_mod, p256_mp_mod);
    memset(r->x + 10, 0, sizeof(r->x) / 2);
    sp_256_mont_reduce_10(r->x, p256_mod, p256_mp_mod);
    /* Reduce x to less than modulus */
    n = sp_256_cmp_10(r->x, p256_mod);
    sp_256_cond_sub_10(r->x, r->x, p256_mod, 0 - (n >= 0));
    sp_256_norm_10(r->x);

    /* y /= z^3 */
    sp_256_mont_mul_10(r->y, p->y, t1, p256_mod, p256_mp_mod);
    memset(r->y + 10, 0, sizeof(r->y) / 2);
    sp_256_mont_reduce_10(r->y, p256_mod, p256_mp_mod);
    /* Reduce y to less than modulus */
    n = sp_256_cmp_10(r->y, p256_mod);
    sp_256_cond_sub_10(r->y, r->y, p256_mod, 0 - (n >= 0));
    sp_256_norm_10(r->y);

    memset(r->z, 0, sizeof(r->z));
    r->z[0] = 1;
}

/* Double the Montgomery form projective point p.
 *
 * r  Result of doubling point.
 * p  Point to double.
 * t  Temporary ordinate data.
 */
static void sp_256_proj_point_dbl_10(sp_point* r, sp_point* p, sp_digit* t)
{
    sp_point *rp[2];
    sp_point tp;
    sp_digit* t1 = t;
    sp_digit* t2 = t + 2*10;
    sp_digit* x;
    sp_digit* y;
    sp_digit* z;
    int i;

    /* When infinity don't double point passed in - constant time. */
    rp[0] = r;
    rp[1] = &tp;
    x = rp[p->infinity]->x;
    y = rp[p->infinity]->y;
    z = rp[p->infinity]->z;
    /* Put point to double into result - good for infinity. */
    if (r != p) {
        for (i = 0; i < 10; i++)
            r->x[i] = p->x[i];
        for (i = 0; i < 10; i++)
            r->y[i] = p->y[i];
        for (i = 0; i < 10; i++)
            r->z[i] = p->z[i];
        r->infinity = p->infinity;
    }

    /* T1 = Z * Z */
    sp_256_mont_sqr_10(t1, z, p256_mod, p256_mp_mod);
    /* Z = Y * Z */
    sp_256_mont_mul_10(z, y, z, p256_mod, p256_mp_mod);
    /* Z = 2Z */
    sp_256_mont_dbl_10(z, z, p256_mod);
    /* T2 = X - T1 */
    sp_256_mont_sub_10(t2, x, t1, p256_mod);
    /* T1 = X + T1 */
    sp_256_mont_add_10(t1, x, t1, p256_mod);
    /* T2 = T1 * T2 */
    sp_256_mont_mul_10(t2, t1, t2, p256_mod, p256_mp_mod);
    /* T1 = 3T2 */
    sp_256_mont_tpl_10(t1, t2, p256_mod);
    /* Y = 2Y */
    sp_256_mont_dbl_10(y, y, p256_mod);
    /* Y = Y * Y */
    sp_256_mont_sqr_10(y, y, p256_mod, p256_mp_mod);
    /* T2 = Y * Y */
    sp_256_mont_sqr_10(t2, y, p256_mod, p256_mp_mod);
    /* T2 = T2/2 */
    sp_256_div2_10(t2, t2, p256_mod);
    /* Y = Y * X */
    sp_256_mont_mul_10(y, y, x, p256_mod, p256_mp_mod);
    /* X = T1 * T1 */
    sp_256_mont_mul_10(x, t1, t1, p256_mod, p256_mp_mod);
    /* X = X - Y */
    sp_256_mont_sub_10(x, x, y, p256_mod);
    /* X = X - Y */
    sp_256_mont_sub_10(x, x, y, p256_mod);
    /* Y = Y - X */
    sp_256_mont_sub_10(y, y, x, p256_mod);
    /* Y = Y * T1 */
    sp_256_mont_mul_10(y, y, t1, p256_mod, p256_mp_mod);
    /* Y = Y - T2 */
    sp_256_mont_sub_10(y, y, t2, p256_mod);
}

/* Add two Montgomery form projective points.
 *
 * r  Result of addition.
 * p  Frist point to add.
 * q  Second point to add.
 * t  Temporary ordinate data.
 */
static void sp_256_proj_point_add_10(sp_point* r, sp_point* p, sp_point* q,
        sp_digit* t)
{
    sp_point *ap[2];
    sp_point *rp[2];
    sp_point tp;
    sp_digit* t1 = t;
    sp_digit* t2 = t + 2*10;
    sp_digit* t3 = t + 4*10;
    sp_digit* t4 = t + 6*10;
    sp_digit* t5 = t + 8*10;
    sp_digit* x;
    sp_digit* y;
    sp_digit* z;
    int i;

    /* Ensure only the first point is the same as the result. */
    if (q == r) {
        sp_point* a = p;
        p = q;
        q = a;
    }

    /* Check double */
    sp_256_sub_10(t1, p256_mod, q->y);
    sp_256_norm_10(t1);
    if (sp_256_cmp_equal_10(p->x, q->x)
     & sp_256_cmp_equal_10(p->z, q->z)
     & (sp_256_cmp_equal_10(p->y, q->y) | sp_256_cmp_equal_10(p->y, t1))
    ) {
        sp_256_proj_point_dbl_10(r, p, t);
    }
    else {
        rp[0] = r;
        rp[1] = &tp;
        memset(&tp, 0, sizeof(tp));
        x = rp[p->infinity | q->infinity]->x;
        y = rp[p->infinity | q->infinity]->y;
        z = rp[p->infinity | q->infinity]->z;

        ap[0] = p;
        ap[1] = q;
        for (i=0; i<10; i++)
            r->x[i] = ap[p->infinity]->x[i];
        for (i=0; i<10; i++)
            r->y[i] = ap[p->infinity]->y[i];
        for (i=0; i<10; i++)
            r->z[i] = ap[p->infinity]->z[i];
        r->infinity = ap[p->infinity]->infinity;

        /* U1 = X1*Z2^2 */
        sp_256_mont_sqr_10(t1, q->z, p256_mod, p256_mp_mod);
        sp_256_mont_mul_10(t3, t1, q->z, p256_mod, p256_mp_mod);
        sp_256_mont_mul_10(t1, t1, x, p256_mod, p256_mp_mod);
        /* U2 = X2*Z1^2 */
        sp_256_mont_sqr_10(t2, z, p256_mod, p256_mp_mod);
        sp_256_mont_mul_10(t4, t2, z, p256_mod, p256_mp_mod);
        sp_256_mont_mul_10(t2, t2, q->x, p256_mod, p256_mp_mod);
        /* S1 = Y1*Z2^3 */
        sp_256_mont_mul_10(t3, t3, y, p256_mod, p256_mp_mod);
        /* S2 = Y2*Z1^3 */
        sp_256_mont_mul_10(t4, t4, q->y, p256_mod, p256_mp_mod);
        /* H = U2 - U1 */
        sp_256_mont_sub_10(t2, t2, t1, p256_mod);
        /* R = S2 - S1 */
        sp_256_mont_sub_10(t4, t4, t3, p256_mod);
        /* Z3 = H*Z1*Z2 */
        sp_256_mont_mul_10(z, z, q->z, p256_mod, p256_mp_mod);
        sp_256_mont_mul_10(z, z, t2, p256_mod, p256_mp_mod);
        /* X3 = R^2 - H^3 - 2*U1*H^2 */
        sp_256_mont_sqr_10(x, t4, p256_mod, p256_mp_mod);
        sp_256_mont_sqr_10(t5, t2, p256_mod, p256_mp_mod);
        sp_256_mont_mul_10(y, t1, t5, p256_mod, p256_mp_mod);
        sp_256_mont_mul_10(t5, t5, t2, p256_mod, p256_mp_mod);
        sp_256_mont_sub_10(x, x, t5, p256_mod);
        sp_256_mont_dbl_10(t1, y, p256_mod);
        sp_256_mont_sub_10(x, x, t1, p256_mod);
        /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
        sp_256_mont_sub_10(y, y, x, p256_mod);
        sp_256_mont_mul_10(y, y, t4, p256_mod, p256_mp_mod);
        sp_256_mont_mul_10(t5, t5, t3, p256_mod, p256_mp_mod);
        sp_256_mont_sub_10(y, y, t5, p256_mod);
    }
}

/* Multiply the point by the scalar and return the result.
 * If map is true then convert result to affine co-ordinates.
 *
 * r     Resulting point.
 * g     Point to multiply.
 * k     Scalar to multiply by.
 * map   Indicates whether to convert result to affine.
 */
static void sp_256_ecc_mulmod_10(sp_point* r, const sp_point* g, const sp_digit* k /*, int map*/)
{
    enum { map = 1 }; /* we always convert result to affine coordinates */
    sp_point t[3];
    sp_digit tmp[2 * 10 * 5];
    sp_digit n;
    int i;
    int c, y;

    memset(t, 0, sizeof(t));

    /* t[0] = {0, 0, 1} * norm */
    t[0].infinity = 1;
    /* t[1] = {g->x, g->y, g->z} * norm */
    sp_256_mod_mul_norm_10(t[1].x, g->x);
    sp_256_mod_mul_norm_10(t[1].y, g->y);
    sp_256_mod_mul_norm_10(t[1].z, g->z);

    i = 9;
    c = 22;
    n = k[i--] << (26 - c);
    for (; ; c--) {
        if (c == 0) {
            if (i == -1)
                break;

            n = k[i--];
            c = 26;
        }

        y = (n >> 25) & 1;
        n <<= 1;

//FIXME: what's "tmp" and why do we pass it down?
//is it scratch space for "sensitive" data, to be memset(0) after we are done?
        sp_256_proj_point_add_10(&t[y^1], &t[0], &t[1], tmp);
        memcpy(&t[2], &t[y], sizeof(sp_point));
        sp_256_proj_point_dbl_10(&t[2], &t[2], tmp);
        memcpy(&t[y], &t[2], sizeof(sp_point));
    }

    if (map)
        sp_256_map_10(r, &t[0], tmp);
    else
        memcpy(r, &t[0], sizeof(sp_point));

    memset(tmp, 0, sizeof(tmp)); //paranoia
    memset(t, 0, sizeof(t)); //paranoia
}

/* Multiply the base point of P256 by the scalar and return the result.
 * If map is true then convert result to affine co-ordinates.
 *
 * r     Resulting point.
 * k     Scalar to multiply by.
 * map   Indicates whether to convert result to affine.
 */
static void sp_256_ecc_mulmod_base_10(sp_point* r, sp_digit* k /*, int map*/)
{
	sp_256_ecc_mulmod_10(r, &p256_base, k /*, map*/);
}

/* Multiply the point by the scalar and serialize the X ordinate.
 * The number is 0 padded to maximum size on output.
 *
 * priv    Scalar to multiply the point by.
 * pub2x32 Point to multiply.
 * out32   Buffer to hold X ordinate.
 */
static void sp_ecc_secret_gen_256(sp_digit priv[10], const uint8_t *pub2x32, uint8_t* out32)
{
    sp_point point[1];

#if FIXED_PEER_PUBKEY
    memset((void*)pub2x32, 0x55, 64);
#endif
    dump_hex("peerkey %s\n", pub2x32, 32); /* in TLS, this is peer's public key */
    dump_hex("        %s\n", pub2x32 + 32, 32);

    sp_256_point_from_bin2x32(point, pub2x32);
    dump_hex("point->x %s\n", point->x, sizeof(point->x));
    dump_hex("point->y %s\n", point->y, sizeof(point->y));

    sp_256_ecc_mulmod_10(point, point, priv);

    sp_256_to_bin(point->x, out32);
    dump_hex("out32: %s\n", out32, 32);
}

/* Generates a scalar that is in the range 1..order-1. */
#define SIMPLIFY 1
/* Add 1 to a. (a = a + 1) */
#if !SIMPLIFY
static void sp_256_add_one_10(sp_digit* a)
{
    a[0]++;
    sp_256_norm_10(a);
}
#endif
static void sp_256_ecc_gen_k_10(sp_digit k[10])
{
#if !SIMPLIFY
	/* The order of the curve P256 minus 2. */
	static const sp_digit p256_order2[10] = {
		0x063254f,0x272b0bf,0x1e84f3b,0x2b69c5e,0x3bce6fa,
		0x3ffffff,0x3ffffff,0x00003ff,0x3ff0000,0x03fffff,
	};
#endif
	uint8_t buf[32];

	for (;;) {
		tls_get_random(buf, sizeof(buf));
#if FIXED_SECRET
		memset(buf, 0x77, sizeof(buf));
#endif
		sp_256_from_bin(k, 10, buf, sizeof(buf));
#if !SIMPLIFY
		if (sp_256_cmp_10(k, p256_order2) < 0)
			break;
#else
		/* non-loopy version (and not needing p256_order2[]):
		 * if most-significant word seems that k can be larger
		 * than p256_order2, fix it up:
		 */
		if (k[9] >= 0x03fffff)
			k[9] = 0x03ffffe;
		break;
#endif
	}
#if !SIMPLIFY
	sp_256_add_one_10(k);
#else
	if (k[0] == 0)
		k[0] = 1;
#endif
#undef SIMPLIFY
}

/* Makes a random EC key pair. */
static void sp_ecc_make_key_256(sp_digit privkey[10], uint8_t *pubkey)
{
	sp_point point[1];

	sp_256_ecc_gen_k_10(privkey);
	sp_256_ecc_mulmod_base_10(point, privkey);
	sp_256_to_bin(point->x, pubkey);
	sp_256_to_bin(point->y, pubkey + 32);

	memset(point, 0, sizeof(point)); //paranoia
}

void FAST_FUNC curve_P256_compute_pubkey_and_premaster(
		uint8_t *pubkey2x32, uint8_t *premaster32,
		const uint8_t *peerkey2x32)
{
	sp_digit privkey[10];

	sp_ecc_make_key_256(privkey, pubkey2x32);
	dump_hex("pubkey: %s\n", pubkey2x32, 32);
	dump_hex("        %s\n", pubkey2x32 + 32, 32);

	/* Combine our privkey and peer's public key to generate premaster */
	sp_ecc_secret_gen_256(privkey, /*x,y:*/peerkey2x32, premaster32);
	dump_hex("premaster: %s\n", premaster32, 32);
}