/* * Copyright (C) 2021 Denys Vlasenko * * Licensed under GPLv2, see file LICENSE in this source tree. */ #include "tls.h" #define SP_DEBUG 0 #define FIXED_SECRET 0 #define FIXED_PEER_PUBKEY 0 #if SP_DEBUG # define dbg(...) fprintf(stderr, __VA_ARGS__) static void dump_hex(const char *fmt, const void *vp, int len) { char hexbuf[32 * 1024 + 4]; const uint8_t *p = vp; bin2hex(hexbuf, (void*)p, len)[0] = '\0'; dbg(fmt, hexbuf); } #else # define dbg(...) ((void)0) # define dump_hex(...) ((void)0) #endif #undef DIGIT_BIT #define DIGIT_BIT 32 typedef int32_t sp_digit; /* The code below is taken from parts of * wolfssl-3.15.3/wolfcrypt/src/sp_c32.c * and heavily modified. * Header comment is kept intact: */ /* sp.c * * Copyright (C) 2006-2018 wolfSSL Inc. * * This file is part of wolfSSL. * * wolfSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * wolfSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA */ /* Implementation by Sean Parkinson. */ typedef struct sp_point { sp_digit x[2 * 10]; sp_digit y[2 * 10]; sp_digit z[2 * 10]; int infinity; } sp_point; /* The modulus (prime) of the curve P256. */ static const sp_digit p256_mod[10] = { 0x3ffffff,0x3ffffff,0x3ffffff,0x003ffff,0x0000000, 0x0000000,0x0000000,0x0000400,0x3ff0000,0x03fffff, }; #define p256_mp_mod ((sp_digit)0x000001) /* The base point of curve P256. */ static const sp_point p256_base = { /* X ordinate */ { 0x098c296,0x04e5176,0x33a0f4a,0x204b7ac,0x277037d,0x0e9103c,0x3ce6e56,0x1091fe2,0x1f2e12c,0x01ac5f4 }, /* Y ordinate */ { 0x3bf51f5,0x1901a0d,0x1ececbb,0x15dacc5,0x22bce33,0x303e785,0x27eb4a7,0x1fe6e3b,0x2e2fe1a,0x013f8d0 }, /* Z ordinate */ { 0x0000001,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000,0x0000000 }, /* infinity */ 0 }; /* Write r as big endian to byte aray. * Fixed length number of bytes written: 32 * * r A single precision integer. * a Byte array. */ static void sp_256_to_bin(sp_digit* r, uint8_t* a) { int i, j, s = 0, b; for (i = 0; i < 9; i++) { r[i+1] += r[i] >> 26; r[i] &= 0x3ffffff; } j = 256 / 8 - 1; a[j] = 0; for (i=0; i<10 && j>=0; i++) { b = 0; a[j--] |= r[i] << s; b += 8 - s; if (j < 0) break; while (b < 26) { a[j--] = r[i] >> b; b += 8; if (j < 0) break; } s = 8 - (b - 26); if (j >= 0) a[j] = 0; if (s != 0) j++; } } /* Read big endian unsigned byte aray into r. * * r A single precision integer. * a Byte array. * n Number of bytes in array to read. */ static void sp_256_from_bin(sp_digit* r, int max, const uint8_t* a, int n) { int i, j = 0, s = 0; r[0] = 0; for (i = n-1; i >= 0; i--) { r[j] |= ((sp_digit)a[i]) << s; if (s >= 18) { r[j] &= 0x3ffffff; s = 26 - s; if (j + 1 >= max) break; r[++j] = a[i] >> s; s = 8 - s; } else s += 8; } for (j++; j < max; j++) r[j] = 0; } /* Convert a point of big-endian 32-byte x,y pair to type sp_point. */ static void sp_256_point_from_bin2x32(sp_point* p, const uint8_t *bin2x32) { memset(p, 0, sizeof(*p)); /*p->infinity = 0;*/ sp_256_from_bin(p->x, 2 * 10, bin2x32, 32); sp_256_from_bin(p->y, 2 * 10, bin2x32 + 32, 32); //static const uint8_t one[1] = { 1 }; //sp_256_from_bin(p->z, 2 * 10, one, 1); p->z[0] = 1; } /* Compare a with b in constant time. * * return -ve, 0 or +ve if a is less than, equal to or greater than b * respectively. */ static sp_digit sp_256_cmp_10(const sp_digit* a, const sp_digit* b) { sp_digit r = 0; int i; for (i = 9; i >= 0; i--) r |= (a[i] - b[i]) & (0 - !r); return r; } /* Compare two numbers to determine if they are equal. * * return 1 when equal and 0 otherwise. */ static int sp_256_cmp_equal_10(const sp_digit* a, const sp_digit* b) { #if 1 sp_digit r = 0; int i; for (i = 0; i < 10; i++) r |= (a[i] ^ b[i]); return r == 0; #else return sp_256_cmp_10(a, b) == 0; #endif } /* Normalize the values in each word to 26 bits. */ static void sp_256_norm_10(sp_digit* a) { int i; for (i = 0; i < 9; i++) { a[i+1] += a[i] >> 26; a[i] &= 0x3ffffff; } } /* Add b to a into r. (r = a + b) */ static void sp_256_add_10(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 10; i++) r[i] = a[i] + b[i]; } /* Conditionally add a and b using the mask m. * m is -1 to add and 0 when not. */ static void sp_256_cond_add_10(sp_digit* r, const sp_digit* a, const sp_digit* b, const sp_digit m) { int i; for (i = 0; i < 10; i++) r[i] = a[i] + (b[i] & m); } /* Conditionally subtract b from a using the mask m. * m is -1 to subtract and 0 when not. */ static void sp_256_cond_sub_10(sp_digit* r, const sp_digit* a, const sp_digit* b, const sp_digit m) { int i; for (i = 0; i < 10; i++) r[i] = a[i] - (b[i] & m); } /* Shift number left one bit. Bottom bit is lost. */ static void sp_256_rshift1_10(sp_digit* r, sp_digit* a) { int i; for (i = 0; i < 9; i++) r[i] = ((a[i] >> 1) | (a[i + 1] << 25)) & 0x3ffffff; r[9] = a[9] >> 1; } /* Multiply a number by Montogmery normalizer mod modulus (prime). * * r The resulting Montgomery form number. * a The number to convert. */ static void sp_256_mod_mul_norm_10(sp_digit* r, const sp_digit* a) { int64_t t[8]; int64_t a32[8]; int64_t o; a32[0] = a[0]; a32[0] |= a[1] << 26; a32[0] &= 0xffffffff; a32[1] = (sp_digit)(a[1] >> 6); a32[1] |= a[2] << 20; a32[1] &= 0xffffffff; a32[2] = (sp_digit)(a[2] >> 12); a32[2] |= a[3] << 14; a32[2] &= 0xffffffff; a32[3] = (sp_digit)(a[3] >> 18); a32[3] |= a[4] << 8; a32[3] &= 0xffffffff; a32[4] = (sp_digit)(a[4] >> 24); a32[4] |= a[5] << 2; a32[4] |= a[6] << 28; a32[4] &= 0xffffffff; a32[5] = (sp_digit)(a[6] >> 4); a32[5] |= a[7] << 22; a32[5] &= 0xffffffff; a32[6] = (sp_digit)(a[7] >> 10); a32[6] |= a[8] << 16; a32[6] &= 0xffffffff; a32[7] = (sp_digit)(a[8] >> 16); a32[7] |= a[9] << 10; a32[7] &= 0xffffffff; /* 1 1 0 -1 -1 -1 -1 0 */ t[0] = 0 + a32[0] + a32[1] - a32[3] - a32[4] - a32[5] - a32[6]; /* 0 1 1 0 -1 -1 -1 -1 */ t[1] = 0 + a32[1] + a32[2] - a32[4] - a32[5] - a32[6] - a32[7]; /* 0 0 1 1 0 -1 -1 -1 */ t[2] = 0 + a32[2] + a32[3] - a32[5] - a32[6] - a32[7]; /* -1 -1 0 2 2 1 0 -1 */ t[3] = 0 - a32[0] - a32[1] + 2 * a32[3] + 2 * a32[4] + a32[5] - a32[7]; /* 0 -1 -1 0 2 2 1 0 */ t[4] = 0 - a32[1] - a32[2] + 2 * a32[4] + 2 * a32[5] + a32[6]; /* 0 0 -1 -1 0 2 2 1 */ t[5] = 0 - a32[2] - a32[3] + 2 * a32[5] + 2 * a32[6] + a32[7]; /* -1 -1 0 0 0 1 3 2 */ t[6] = 0 - a32[0] - a32[1] + a32[5] + 3 * a32[6] + 2 * a32[7]; /* 1 0 -1 -1 -1 -1 0 3 */ t[7] = 0 + a32[0] - a32[2] - a32[3] - a32[4] - a32[5] + 3 * a32[7]; t[1] += t[0] >> 32; t[0] &= 0xffffffff; t[2] += t[1] >> 32; t[1] &= 0xffffffff; t[3] += t[2] >> 32; t[2] &= 0xffffffff; t[4] += t[3] >> 32; t[3] &= 0xffffffff; t[5] += t[4] >> 32; t[4] &= 0xffffffff; t[6] += t[5] >> 32; t[5] &= 0xffffffff; t[7] += t[6] >> 32; t[6] &= 0xffffffff; o = t[7] >> 32; t[7] &= 0xffffffff; t[0] += o; t[3] -= o; t[6] -= o; t[7] += o; t[1] += t[0] >> 32; t[0] &= 0xffffffff; t[2] += t[1] >> 32; t[1] &= 0xffffffff; t[3] += t[2] >> 32; t[2] &= 0xffffffff; t[4] += t[3] >> 32; t[3] &= 0xffffffff; t[5] += t[4] >> 32; t[4] &= 0xffffffff; t[6] += t[5] >> 32; t[5] &= 0xffffffff; t[7] += t[6] >> 32; t[6] &= 0xffffffff; r[0] = (sp_digit)(t[0]) & 0x3ffffff; r[1] = (sp_digit)(t[0] >> 26); r[1] |= t[1] << 6; r[1] &= 0x3ffffff; r[2] = (sp_digit)(t[1] >> 20); r[2] |= t[2] << 12; r[2] &= 0x3ffffff; r[3] = (sp_digit)(t[2] >> 14); r[3] |= t[3] << 18; r[3] &= 0x3ffffff; r[4] = (sp_digit)(t[3] >> 8); r[4] |= t[4] << 24; r[4] &= 0x3ffffff; r[5] = (sp_digit)(t[4] >> 2) & 0x3ffffff; r[6] = (sp_digit)(t[4] >> 28); r[6] |= t[5] << 4; r[6] &= 0x3ffffff; r[7] = (sp_digit)(t[5] >> 22); r[7] |= t[6] << 10; r[7] &= 0x3ffffff; r[8] = (sp_digit)(t[6] >> 16); r[8] |= t[7] << 16; r[8] &= 0x3ffffff; r[9] = (sp_digit)(t[7] >> 10); } /* Mul a by scalar b and add into r. (r += a * b) */ static void sp_256_mul_add_10(sp_digit* r, const sp_digit* a, sp_digit b) { int64_t tb = b; int64_t t = 0; int i; for (i = 0; i < 10; i++) { t += (tb * a[i]) + r[i]; r[i] = t & 0x3ffffff; t >>= 26; } r[10] += t; } /* Divide the number by 2 mod the modulus (prime). (r = a / 2 % m) */ static void sp_256_div2_10(sp_digit* r, const sp_digit* a, const sp_digit* m) { sp_256_cond_add_10(r, a, m, 0 - (a[0] & 1)); sp_256_norm_10(r); sp_256_rshift1_10(r, r); } /* Shift the result in the high 256 bits down to the bottom. */ static void sp_256_mont_shift_10(sp_digit* r, const sp_digit* a) { int i; sp_digit n, s; s = a[10]; n = a[9] >> 22; for (i = 0; i < 9; i++) { n += (s & 0x3ffffff) << 4; r[i] = n & 0x3ffffff; n >>= 26; s = a[11 + i] + (s >> 26); } n += s << 4; r[9] = n; memset(&r[10], 0, sizeof(*r) * 10); } /* Add two Montgomery form numbers (r = a + b % m) */ static void sp_256_mont_add_10(sp_digit* r, const sp_digit* a, const sp_digit* b, const sp_digit* m) { sp_256_add_10(r, a, b); sp_256_norm_10(r); sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0)); sp_256_norm_10(r); } /* Double a Montgomery form number (r = a + a % m) */ static void sp_256_mont_dbl_10(sp_digit* r, const sp_digit* a, const sp_digit* m) { sp_256_add_10(r, a, a); sp_256_norm_10(r); sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0)); sp_256_norm_10(r); } /* Triple a Montgomery form number (r = a + a + a % m) */ static void sp_256_mont_tpl_10(sp_digit* r, const sp_digit* a, const sp_digit* m) { sp_256_add_10(r, a, a); sp_256_norm_10(r); sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0)); sp_256_norm_10(r); sp_256_add_10(r, r, a); sp_256_norm_10(r); sp_256_cond_sub_10(r, r, m, 0 - ((r[9] >> 22) > 0)); sp_256_norm_10(r); } /* Sub b from a into r. (r = a - b) */ static void sp_256_sub_10(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 10; i++) r[i] = a[i] - b[i]; } /* Subtract two Montgomery form numbers (r = a - b % m) */ static void sp_256_mont_sub_10(sp_digit* r, const sp_digit* a, const sp_digit* b, const sp_digit* m) { sp_256_sub_10(r, a, b); sp_256_cond_add_10(r, r, m, r[9] >> 22); sp_256_norm_10(r); } /* Reduce the number back to 256 bits using Montgomery reduction. * * a A single precision number to reduce in place. * m The single precision number representing the modulus. * mp The digit representing the negative inverse of m mod 2^n. */ static void sp_256_mont_reduce_10(sp_digit* a, const sp_digit* m, sp_digit mp) { int i; sp_digit mu; if (mp != 1) { for (i = 0; i < 9; i++) { mu = (a[i] * mp) & 0x3ffffff; sp_256_mul_add_10(a+i, m, mu); a[i+1] += a[i] >> 26; } mu = (a[i] * mp) & 0x3fffffl; sp_256_mul_add_10(a+i, m, mu); a[i+1] += a[i] >> 26; a[i] &= 0x3ffffff; } else { for (i = 0; i < 9; i++) { mu = a[i] & 0x3ffffff; sp_256_mul_add_10(a+i, p256_mod, mu); a[i+1] += a[i] >> 26; } mu = a[i] & 0x3fffffl; sp_256_mul_add_10(a+i, p256_mod, mu); a[i+1] += a[i] >> 26; a[i] &= 0x3ffffff; } sp_256_mont_shift_10(a, a); sp_256_cond_sub_10(a, a, m, 0 - ((a[9] >> 22) > 0)); sp_256_norm_10(a); } /* Multiply a and b into r. (r = a * b) */ static void sp_256_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i, j, k; int64_t c; c = ((int64_t)a[9]) * b[9]; r[19] = (sp_digit)(c >> 26); c = (c & 0x3ffffff) << 26; for (k = 17; k >= 0; k--) { for (i = 9; i >= 0; i--) { j = k - i; if (j >= 10) break; if (j < 0) continue; c += ((int64_t)a[i]) * b[j]; } r[k + 2] += c >> 52; r[k + 1] = (c >> 26) & 0x3ffffff; c = (c & 0x3ffffff) << 26; } r[0] = (sp_digit)(c >> 26); } /* Multiply two Montogmery form numbers mod the modulus (prime). * (r = a * b mod m) * * r Result of multiplication. * a First number to multiply in Montogmery form. * b Second number to multiply in Montogmery form. * m Modulus (prime). * mp Montogmery mulitplier. */ static void sp_256_mont_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b, const sp_digit* m, sp_digit mp) { sp_256_mul_10(r, a, b); sp_256_mont_reduce_10(r, m, mp); } /* Square a and put result in r. (r = a * a) */ static void sp_256_sqr_10(sp_digit* r, const sp_digit* a) { int i, j, k; int64_t c; c = ((int64_t)a[9]) * a[9]; r[19] = (sp_digit)(c >> 26); c = (c & 0x3ffffff) << 26; for (k = 17; k >= 0; k--) { for (i = 9; i >= 0; i--) { j = k - i; if (j >= 10 || i <= j) break; if (j < 0) continue; c += ((int64_t)a[i]) * a[j] * 2; } if (i == j) c += ((int64_t)a[i]) * a[i]; r[k + 2] += c >> 52; r[k + 1] = (c >> 26) & 0x3ffffff; c = (c & 0x3ffffff) << 26; } r[0] = (sp_digit)(c >> 26); } /* Square the Montgomery form number. (r = a * a mod m) * * r Result of squaring. * a Number to square in Montogmery form. * m Modulus (prime). * mp Montogmery mulitplier. */ static void sp_256_mont_sqr_10(sp_digit* r, const sp_digit* a, const sp_digit* m, sp_digit mp) { sp_256_sqr_10(r, a); sp_256_mont_reduce_10(r, m, mp); } /* Invert the number, in Montgomery form, modulo the modulus (prime) of the * P256 curve. (r = 1 / a mod m) * * r Inverse result. * a Number to invert. * td Temporary data. */ /* Mod-2 for the P256 curve. */ static const uint32_t p256_mod_2[8] = { 0xfffffffd,0xffffffff,0xffffffff,0x00000000, 0x00000000,0x00000000,0x00000001,0xffffffff, }; static void sp_256_mont_inv_10(sp_digit* r, sp_digit* a, sp_digit* td) { sp_digit* t = td; int i; memcpy(t, a, sizeof(sp_digit) * 10); for (i = 254; i >= 0; i--) { sp_256_mont_sqr_10(t, t, p256_mod, p256_mp_mod); if (p256_mod_2[i / 32] & ((sp_digit)1 << (i % 32))) sp_256_mont_mul_10(t, t, a, p256_mod, p256_mp_mod); } memcpy(r, t, sizeof(sp_digit) * 10); } /* Map the Montgomery form projective co-ordinate point to an affine point. * * r Resulting affine co-ordinate point. * p Montgomery form projective co-ordinate point. * t Temporary ordinate data. */ static void sp_256_map_10(sp_point* r, sp_point* p, sp_digit* t) { sp_digit* t1 = t; sp_digit* t2 = t + 2*10; int32_t n; sp_256_mont_inv_10(t1, p->z, t + 2*10); sp_256_mont_sqr_10(t2, t1, p256_mod, p256_mp_mod); sp_256_mont_mul_10(t1, t2, t1, p256_mod, p256_mp_mod); /* x /= z^2 */ sp_256_mont_mul_10(r->x, p->x, t2, p256_mod, p256_mp_mod); memset(r->x + 10, 0, sizeof(r->x) / 2); sp_256_mont_reduce_10(r->x, p256_mod, p256_mp_mod); /* Reduce x to less than modulus */ n = sp_256_cmp_10(r->x, p256_mod); sp_256_cond_sub_10(r->x, r->x, p256_mod, 0 - (n >= 0)); sp_256_norm_10(r->x); /* y /= z^3 */ sp_256_mont_mul_10(r->y, p->y, t1, p256_mod, p256_mp_mod); memset(r->y + 10, 0, sizeof(r->y) / 2); sp_256_mont_reduce_10(r->y, p256_mod, p256_mp_mod); /* Reduce y to less than modulus */ n = sp_256_cmp_10(r->y, p256_mod); sp_256_cond_sub_10(r->y, r->y, p256_mod, 0 - (n >= 0)); sp_256_norm_10(r->y); memset(r->z, 0, sizeof(r->z)); r->z[0] = 1; } /* Double the Montgomery form projective point p. * * r Result of doubling point. * p Point to double. * t Temporary ordinate data. */ static void sp_256_proj_point_dbl_10(sp_point* r, sp_point* p, sp_digit* t) { sp_point *rp[2]; sp_point tp; sp_digit* t1 = t; sp_digit* t2 = t + 2*10; sp_digit* x; sp_digit* y; sp_digit* z; int i; /* When infinity don't double point passed in - constant time. */ rp[0] = r; rp[1] = &tp; x = rp[p->infinity]->x; y = rp[p->infinity]->y; z = rp[p->infinity]->z; /* Put point to double into result - good for infinity. */ if (r != p) { for (i = 0; i < 10; i++) r->x[i] = p->x[i]; for (i = 0; i < 10; i++) r->y[i] = p->y[i]; for (i = 0; i < 10; i++) r->z[i] = p->z[i]; r->infinity = p->infinity; } /* T1 = Z * Z */ sp_256_mont_sqr_10(t1, z, p256_mod, p256_mp_mod); /* Z = Y * Z */ sp_256_mont_mul_10(z, y, z, p256_mod, p256_mp_mod); /* Z = 2Z */ sp_256_mont_dbl_10(z, z, p256_mod); /* T2 = X - T1 */ sp_256_mont_sub_10(t2, x, t1, p256_mod); /* T1 = X + T1 */ sp_256_mont_add_10(t1, x, t1, p256_mod); /* T2 = T1 * T2 */ sp_256_mont_mul_10(t2, t1, t2, p256_mod, p256_mp_mod); /* T1 = 3T2 */ sp_256_mont_tpl_10(t1, t2, p256_mod); /* Y = 2Y */ sp_256_mont_dbl_10(y, y, p256_mod); /* Y = Y * Y */ sp_256_mont_sqr_10(y, y, p256_mod, p256_mp_mod); /* T2 = Y * Y */ sp_256_mont_sqr_10(t2, y, p256_mod, p256_mp_mod); /* T2 = T2/2 */ sp_256_div2_10(t2, t2, p256_mod); /* Y = Y * X */ sp_256_mont_mul_10(y, y, x, p256_mod, p256_mp_mod); /* X = T1 * T1 */ sp_256_mont_mul_10(x, t1, t1, p256_mod, p256_mp_mod); /* X = X - Y */ sp_256_mont_sub_10(x, x, y, p256_mod); /* X = X - Y */ sp_256_mont_sub_10(x, x, y, p256_mod); /* Y = Y - X */ sp_256_mont_sub_10(y, y, x, p256_mod); /* Y = Y * T1 */ sp_256_mont_mul_10(y, y, t1, p256_mod, p256_mp_mod); /* Y = Y - T2 */ sp_256_mont_sub_10(y, y, t2, p256_mod); } /* Add two Montgomery form projective points. * * r Result of addition. * p Frist point to add. * q Second point to add. * t Temporary ordinate data. */ static void sp_256_proj_point_add_10(sp_point* r, sp_point* p, sp_point* q, sp_digit* t) { sp_point *ap[2]; sp_point *rp[2]; sp_point tp; sp_digit* t1 = t; sp_digit* t2 = t + 2*10; sp_digit* t3 = t + 4*10; sp_digit* t4 = t + 6*10; sp_digit* t5 = t + 8*10; sp_digit* x; sp_digit* y; sp_digit* z; int i; /* Ensure only the first point is the same as the result. */ if (q == r) { sp_point* a = p; p = q; q = a; } /* Check double */ sp_256_sub_10(t1, p256_mod, q->y); sp_256_norm_10(t1); if (sp_256_cmp_equal_10(p->x, q->x) & sp_256_cmp_equal_10(p->z, q->z) & (sp_256_cmp_equal_10(p->y, q->y) | sp_256_cmp_equal_10(p->y, t1)) ) { sp_256_proj_point_dbl_10(r, p, t); } else { rp[0] = r; rp[1] = &tp; memset(&tp, 0, sizeof(tp)); x = rp[p->infinity | q->infinity]->x; y = rp[p->infinity | q->infinity]->y; z = rp[p->infinity | q->infinity]->z; ap[0] = p; ap[1] = q; for (i=0; i<10; i++) r->x[i] = ap[p->infinity]->x[i]; for (i=0; i<10; i++) r->y[i] = ap[p->infinity]->y[i]; for (i=0; i<10; i++) r->z[i] = ap[p->infinity]->z[i]; r->infinity = ap[p->infinity]->infinity; /* U1 = X1*Z2^2 */ sp_256_mont_sqr_10(t1, q->z, p256_mod, p256_mp_mod); sp_256_mont_mul_10(t3, t1, q->z, p256_mod, p256_mp_mod); sp_256_mont_mul_10(t1, t1, x, p256_mod, p256_mp_mod); /* U2 = X2*Z1^2 */ sp_256_mont_sqr_10(t2, z, p256_mod, p256_mp_mod); sp_256_mont_mul_10(t4, t2, z, p256_mod, p256_mp_mod); sp_256_mont_mul_10(t2, t2, q->x, p256_mod, p256_mp_mod); /* S1 = Y1*Z2^3 */ sp_256_mont_mul_10(t3, t3, y, p256_mod, p256_mp_mod); /* S2 = Y2*Z1^3 */ sp_256_mont_mul_10(t4, t4, q->y, p256_mod, p256_mp_mod); /* H = U2 - U1 */ sp_256_mont_sub_10(t2, t2, t1, p256_mod); /* R = S2 - S1 */ sp_256_mont_sub_10(t4, t4, t3, p256_mod); /* Z3 = H*Z1*Z2 */ sp_256_mont_mul_10(z, z, q->z, p256_mod, p256_mp_mod); sp_256_mont_mul_10(z, z, t2, p256_mod, p256_mp_mod); /* X3 = R^2 - H^3 - 2*U1*H^2 */ sp_256_mont_sqr_10(x, t4, p256_mod, p256_mp_mod); sp_256_mont_sqr_10(t5, t2, p256_mod, p256_mp_mod); sp_256_mont_mul_10(y, t1, t5, p256_mod, p256_mp_mod); sp_256_mont_mul_10(t5, t5, t2, p256_mod, p256_mp_mod); sp_256_mont_sub_10(x, x, t5, p256_mod); sp_256_mont_dbl_10(t1, y, p256_mod); sp_256_mont_sub_10(x, x, t1, p256_mod); /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */ sp_256_mont_sub_10(y, y, x, p256_mod); sp_256_mont_mul_10(y, y, t4, p256_mod, p256_mp_mod); sp_256_mont_mul_10(t5, t5, t3, p256_mod, p256_mp_mod); sp_256_mont_sub_10(y, y, t5, p256_mod); } } /* Multiply the point by the scalar and return the result. * If map is true then convert result to affine co-ordinates. * * r Resulting point. * g Point to multiply. * k Scalar to multiply by. * map Indicates whether to convert result to affine. */ static void sp_256_ecc_mulmod_10(sp_point* r, const sp_point* g, const sp_digit* k /*, int map*/) { enum { map = 1 }; /* we always convert result to affine coordinates */ sp_point t[3]; sp_digit tmp[2 * 10 * 5]; sp_digit n; int i; int c, y; memset(t, 0, sizeof(t)); /* t[0] = {0, 0, 1} * norm */ t[0].infinity = 1; /* t[1] = {g->x, g->y, g->z} * norm */ sp_256_mod_mul_norm_10(t[1].x, g->x); sp_256_mod_mul_norm_10(t[1].y, g->y); sp_256_mod_mul_norm_10(t[1].z, g->z); i = 9; c = 22; n = k[i--] << (26 - c); for (; ; c--) { if (c == 0) { if (i == -1) break; n = k[i--]; c = 26; } y = (n >> 25) & 1; n <<= 1; //FIXME: what's "tmp" and why do we pass it down? //is it scratch space for "sensitive" data, to be memset(0) after we are done? sp_256_proj_point_add_10(&t[y^1], &t[0], &t[1], tmp); memcpy(&t[2], &t[y], sizeof(sp_point)); sp_256_proj_point_dbl_10(&t[2], &t[2], tmp); memcpy(&t[y], &t[2], sizeof(sp_point)); } if (map) sp_256_map_10(r, &t[0], tmp); else memcpy(r, &t[0], sizeof(sp_point)); memset(tmp, 0, sizeof(tmp)); //paranoia memset(t, 0, sizeof(t)); //paranoia } /* Multiply the base point of P256 by the scalar and return the result. * If map is true then convert result to affine co-ordinates. * * r Resulting point. * k Scalar to multiply by. * map Indicates whether to convert result to affine. */ static void sp_256_ecc_mulmod_base_10(sp_point* r, sp_digit* k /*, int map*/) { sp_256_ecc_mulmod_10(r, &p256_base, k /*, map*/); } /* Multiply the point by the scalar and serialize the X ordinate. * The number is 0 padded to maximum size on output. * * priv Scalar to multiply the point by. * pub2x32 Point to multiply. * out32 Buffer to hold X ordinate. */ static void sp_ecc_secret_gen_256(sp_digit priv[10], const uint8_t *pub2x32, uint8_t* out32) { sp_point point[1]; #if FIXED_PEER_PUBKEY memset((void*)pub2x32, 0x55, 64); #endif dump_hex("peerkey %s\n", pub2x32, 32); /* in TLS, this is peer's public key */ dump_hex(" %s\n", pub2x32 + 32, 32); sp_256_point_from_bin2x32(point, pub2x32); dump_hex("point->x %s\n", point->x, sizeof(point->x)); dump_hex("point->y %s\n", point->y, sizeof(point->y)); sp_256_ecc_mulmod_10(point, point, priv); sp_256_to_bin(point->x, out32); dump_hex("out32: %s\n", out32, 32); } /* Generates a scalar that is in the range 1..order-1. */ #define SIMPLIFY 1 /* Add 1 to a. (a = a + 1) */ #if !SIMPLIFY static void sp_256_add_one_10(sp_digit* a) { a[0]++; sp_256_norm_10(a); } #endif static void sp_256_ecc_gen_k_10(sp_digit k[10]) { #if !SIMPLIFY /* The order of the curve P256 minus 2. */ static const sp_digit p256_order2[10] = { 0x063254f,0x272b0bf,0x1e84f3b,0x2b69c5e,0x3bce6fa, 0x3ffffff,0x3ffffff,0x00003ff,0x3ff0000,0x03fffff, }; #endif uint8_t buf[32]; for (;;) { tls_get_random(buf, sizeof(buf)); #if FIXED_SECRET memset(buf, 0x77, sizeof(buf)); #endif sp_256_from_bin(k, 10, buf, sizeof(buf)); #if !SIMPLIFY if (sp_256_cmp_10(k, p256_order2) < 0) break; #else /* non-loopy version (and not needing p256_order2[]): * if most-significant word seems that k can be larger * than p256_order2, fix it up: */ if (k[9] >= 0x03fffff) k[9] = 0x03ffffe; break; #endif } #if !SIMPLIFY sp_256_add_one_10(k); #else if (k[0] == 0) k[0] = 1; #endif #undef SIMPLIFY } /* Makes a random EC key pair. */ static void sp_ecc_make_key_256(sp_digit privkey[10], uint8_t *pubkey) { sp_point point[1]; sp_256_ecc_gen_k_10(privkey); sp_256_ecc_mulmod_base_10(point, privkey); sp_256_to_bin(point->x, pubkey); sp_256_to_bin(point->y, pubkey + 32); memset(point, 0, sizeof(point)); //paranoia } void FAST_FUNC curve_P256_compute_pubkey_and_premaster( uint8_t *pubkey2x32, uint8_t *premaster32, const uint8_t *peerkey2x32) { sp_digit privkey[10]; sp_ecc_make_key_256(privkey, pubkey2x32); dump_hex("pubkey: %s\n", pubkey2x32, 32); dump_hex(" %s\n", pubkey2x32 + 32, 32); /* Combine our privkey and peer's public key to generate premaster */ sp_ecc_secret_gen_256(privkey, /*x,y:*/peerkey2x32, premaster32); dump_hex("premaster: %s\n", premaster32, 32); }