1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
|
/*
* BIRD Internet Routing Daemon -- Raw allocation
*
* (c) 2020 Maria Matejka <mq@ucw.cz>
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
#include "nest/bird.h"
#include "lib/resource.h"
#include "lib/lists.h"
#include "lib/event.h"
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#ifdef HAVE_MMAP
#include <sys/mman.h>
#endif
#ifdef CONFIG_DISABLE_THP
#include <sys/prctl.h>
#ifndef PR_SET_THP_DISABLE
#define PR_SET_THP_DISABLE 41
#endif
#endif
long page_size = 0;
#ifdef HAVE_MMAP
#define KEEP_PAGES_MAIN_MAX 256
#define KEEP_PAGES_MAIN_MIN 8
#define CLEANUP_PAGES_BULK 256
STATIC_ASSERT(KEEP_PAGES_MAIN_MIN * 4 < KEEP_PAGES_MAIN_MAX);
static _Bool use_fake = 0;
#if DEBUGGING
struct free_page {
node unused[42];
node n;
};
#else
struct free_page {
node n;
};
#endif
#define EP_POS_MAX ((page_size - OFFSETOF(struct empty_pages, pages)) / sizeof (void *))
struct empty_pages {
node n;
uint pos;
void *pages[0];
};
struct free_pages {
list pages; /* List of (struct free_page) keeping free pages without releasing them (hot) */
list empty; /* List of (struct empty_pages) keeping invalidated pages mapped for us (cold) */
u16 min, max; /* Minimal and maximal number of free pages kept */
uint cnt; /* Number of free pages in list */
event cleanup;
};
static void global_free_pages_cleanup_event(void *);
static void *alloc_cold_page(void);
static struct free_pages global_free_pages = {
.min = KEEP_PAGES_MAIN_MIN,
.max = KEEP_PAGES_MAIN_MAX,
.cleanup = { .hook = global_free_pages_cleanup_event },
};
uint *pages_kept = &global_free_pages.cnt;
static void *
alloc_sys_page(void)
{
void *ptr = mmap(NULL, page_size, PROT_WRITE | PROT_READ, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (ptr == MAP_FAILED)
die("mmap(%ld) failed: %m", (s64) page_size);
return ptr;
}
extern int shutting_down; /* Shutdown requested. */
#else // ! HAVE_MMAP
#define use_fake 1
#endif
void *
alloc_page(void)
{
/* If the system page allocator is goofy, we use posix_memalign to get aligned blocks of memory. */
if (use_fake)
{
void *ptr = NULL;
int err = posix_memalign(&ptr, page_size, page_size);
if (err || !ptr)
die("posix_memalign(%ld) failed", (s64) page_size);
return ptr;
}
#ifdef HAVE_MMAP
struct free_pages *fps = &global_free_pages;
/* If there is any free page kept hot, we use it. */
if (fps->cnt)
{
struct free_page *fp = SKIP_BACK(struct free_page, n, HEAD(fps->pages));
rem_node(&fp->n);
/* If the hot-free-page cache is getting short, request the cleanup routine to replenish the cache */
if ((--fps->cnt < fps->min) && !shutting_down)
ev_schedule(&fps->cleanup);
return fp;
}
else
return alloc_cold_page();
}
static void *
alloc_cold_page(void)
{
struct free_pages *fps = &global_free_pages;
/* If there is any free page kept cold, we use that. */
if (!EMPTY_LIST(fps->empty))
{
struct empty_pages *ep = HEAD(fps->empty);
/* Either the keeper page contains at least one cold page pointer, return that */
if (ep->pos)
return ep->pages[--ep->pos];
/* Or the keeper page has no more cold page pointer, return the keeper page */
rem_node(&ep->n);
return ep;
}
/* And in the worst case, allocate a new page by mmap() */
return alloc_sys_page();
#endif
}
void
free_page(void *ptr)
{
/* If the system page allocator is goofy, we just free the block and care no more. */
if (use_fake)
{
free(ptr);
return;
}
#ifdef HAVE_MMAP
struct free_pages *fps = &global_free_pages;
struct free_page *fp = ptr;
/* Otherwise, we add the free page to the hot-free-page list */
fp->n = (node) {};
add_tail(&fps->pages, &fp->n);
/* And if there are too many hot free pages, we ask for page cleanup */
if ((++fps->cnt > fps->max) && !shutting_down)
ev_schedule(&fps->cleanup);
#endif
}
#ifdef HAVE_MMAP
static void
global_free_pages_cleanup_event(void *data UNUSED)
{
/* Cleanup on shutdown is ignored. All pages may be kept hot, OS will take care. */
if (shutting_down)
return;
struct free_pages *fps = &global_free_pages;
/* Cleanup may get called when hot free page cache is short of pages. Replenishing. */
while (fps->cnt / 2 < fps->min)
free_page(alloc_cold_page());
/* Or the hot free page cache is too big. Moving some pages to the cold free page cache. */
for (int limit = CLEANUP_PAGES_BULK; limit && (fps->cnt > fps->max / 2); fps->cnt--, limit--)
{
struct free_page *fp = SKIP_BACK(struct free_page, n, TAIL(fps->pages));
rem_node(&fp->n);
/* Empty pages are stored as pointers. To store them, we need a pointer block. */
struct empty_pages *ep;
if (EMPTY_LIST(fps->empty) || ((ep = HEAD(fps->empty))->pos == EP_POS_MAX))
{
/* There is either no pointer block or the last block is full. We use this block as a pointer block. */
ep = (struct empty_pages *) fp;
*ep = (struct empty_pages) {};
add_head(&fps->empty, &ep->n);
}
else
{
/* We store this block as a pointer into the first free place
* and tell the OS that the underlying memory is trash. */
ep->pages[ep->pos++] = fp;
if (madvise(fp, page_size,
#ifdef CONFIG_MADV_DONTNEED_TO_FREE
MADV_DONTNEED
#else
MADV_FREE
#endif
) < 0)
bug("madvise(%p) failed: %m", fp);
}
}
/* If the hot free page cleanup hit the limit, re-schedule this routine
* to allow for other routines to run. */
if (fps->cnt > fps->max)
ev_schedule(&fps->cleanup);
}
#endif
void
resource_sys_init(void)
{
#ifdef CONFIG_DISABLE_THP
/* Disable transparent huge pages, they do not work properly with madvice(MADV_DONTNEED) */
if (prctl(PR_SET_THP_DISABLE, (unsigned long) 1, (unsigned long) 0, (unsigned long) 0, (unsigned long) 0) < 0)
log(L_WARN "Cannot disable transparent huge pages: prctl(PR_SET_THP_DISABLE) failed: %m");
#endif
#ifdef HAVE_MMAP
ASSERT_DIE(global_free_pages.cnt == 0);
/* Check what page size the system supports */
if (!(page_size = sysconf(_SC_PAGESIZE)))
die("System page size must be non-zero");
if ((u64_popcount(page_size) == 1) && (page_size >= (1 << 10)) && (page_size <= (1 << 18)))
{
/* We assume that page size has only one bit and is between 1K and 256K (incl.).
* Otherwise, the assumptions in lib/slab.c (sl_head's num_full range) aren't met. */
struct free_pages *fps = &global_free_pages;
init_list(&fps->pages);
init_list(&fps->empty);
global_free_pages_cleanup_event(NULL);
return;
}
/* Too big or strange page, use the aligned allocator instead */
log(L_WARN "Got strange memory page size (%ld), using the aligned allocator instead", (s64) page_size);
use_fake = 1;
#endif
page_size = 4096;
}
|