summaryrefslogtreecommitdiff
path: root/sysdep/unix/alloc.c
blob: 030fb9c1501d2b68822f107186a0b0eda525ae8f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
/*
 *	BIRD Internet Routing Daemon -- Raw allocation
 *
 *	(c) 2020  Maria Matejka <mq@ucw.cz>
 *
 *	Can be freely distributed and used under the terms of the GNU GPL.
 */

#include "nest/bird.h"
#include "lib/resource.h"
#include "lib/lists.h"
#include "lib/event.h"
#include "lib/rcu.h"

#include <errno.h>
#include <stdlib.h>
#include <unistd.h>

#ifdef HAVE_MMAP
#include <sys/mman.h>
#endif

#ifdef CONFIG_DISABLE_THP
#include <sys/prctl.h>
#endif

long page_size = 0;

#ifdef HAVE_MMAP
#define KEEP_PAGES_MAX	512
#define KEEP_PAGES_MIN	32
#define KEEP_PAGES_MAX_LOCAL	16
#define ALLOC_PAGES_AT_ONCE	8

STATIC_ASSERT(KEEP_PAGES_MIN * 4 < KEEP_PAGES_MAX);
STATIC_ASSERT(ALLOC_PAGES_AT_ONCE < KEEP_PAGES_MAX_LOCAL);

static _Bool use_fake = 0;
static _Bool initialized = 0;

#if DEBUGGING
struct free_page {
  node unused[42];
  struct free_page * _Atomic next;
};
#else
struct free_page {
  struct free_page * _Atomic next;
};
#endif

#define EP_POS_MAX	((page_size - OFFSETOF(struct empty_pages, pages)) / sizeof (void *))

struct empty_pages {
  struct empty_pages *next;
  uint pos;
  void *pages[0];
};

DEFINE_DOMAIN(resource);
static DOMAIN(resource) empty_pages_domain;
static struct empty_pages *empty_pages = NULL;

static struct free_page * _Atomic page_stack = NULL;
static _Thread_local struct free_page * local_page_stack = NULL;

static void page_cleanup(void *);
static event page_cleanup_event = { .hook = page_cleanup, };
#define SCHEDULE_CLEANUP  do if (initialized && !shutting_down) ev_send(&global_event_list, &page_cleanup_event); while (0)

_Atomic int pages_kept = 0;
_Atomic int pages_kept_locally = 0;
static int pages_kept_here = 0;

static void *
alloc_sys_page(void)
{
  void *ptr = mmap(NULL, page_size * ALLOC_PAGES_AT_ONCE, PROT_WRITE | PROT_READ, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

  if (ptr == MAP_FAILED)
    bug("mmap(%lu) failed: %m", page_size);

  return ptr;
}

extern int shutting_down; /* Shutdown requested. */

#else // ! HAVE_MMAP
#define use_fake  1
#endif

void *
alloc_page(void)
{
  /* If the system page allocator is goofy, we use posix_memalign to get aligned blocks of memory. */
  if (use_fake)
  {
    void *ptr = NULL;
    int err = posix_memalign(&ptr, page_size, page_size);

    if (err || !ptr)
      bug("posix_memalign(%lu) failed", (long unsigned int) page_size);

    return ptr;
  }

#ifdef HAVE_MMAP
  /* If there is any free page kept hot in this thread, we use it. */
  struct free_page *fp = local_page_stack;
  if (fp)
  {
    local_page_stack = atomic_load_explicit(&fp->next, memory_order_acquire);
    atomic_fetch_sub_explicit(&pages_kept_locally, 1, memory_order_relaxed);
    pages_kept_here--;
    return fp;
  }

  /* If there is any free page kept hot in global storage, we use it. */
  rcu_read_lock();
  fp = atomic_load_explicit(&page_stack, memory_order_acquire);
  while (fp && !atomic_compare_exchange_strong_explicit(
	&page_stack, &fp, atomic_load_explicit(&fp->next, memory_order_acquire),
	memory_order_acq_rel, memory_order_acquire))
    ;
  rcu_read_unlock();

  if (fp)
  {
    atomic_fetch_sub_explicit(&pages_kept, 1, memory_order_relaxed);
    return fp;
  }

  /* If there is any free page kept cold, we use that. */
  LOCK_DOMAIN(resource, empty_pages_domain);
  if (empty_pages) {
    if (empty_pages->pos)
      /* Either the keeper page contains at least one cold page pointer, return that */
      fp = empty_pages->pages[--empty_pages->pos];
    else
    {
      /* Or the keeper page has no more cold page pointer, return the keeper page */
      fp = (struct free_page *) empty_pages;
      empty_pages = empty_pages->next;
    }
  }
  UNLOCK_DOMAIN(resource, empty_pages_domain);

  if (fp)
    return fp;

  /* And in the worst case, allocate some new pages by mmap() */
  void *ptr = alloc_sys_page();
  for (int i=1; i<ALLOC_PAGES_AT_ONCE; i++)
    free_page(ptr + page_size * i);

  return ptr;
#endif
}

void
free_page(void *ptr)
{
  /* If the system page allocator is goofy, we just free the block and care no more. */
  if (use_fake)
  {
    free(ptr);
    return;
  }

#ifdef HAVE_MMAP
  /* We primarily try to keep the pages locally. */
  struct free_page *fp = ptr;
  if (shutting_down || (pages_kept_here < KEEP_PAGES_MAX_LOCAL))
  {
    atomic_store_explicit(&fp->next, local_page_stack, memory_order_relaxed);
    atomic_fetch_add_explicit(&pages_kept_locally, 1, memory_order_relaxed);
    pages_kept_here++;
    return;
  }

  /* If there are too many local pages, we add the free page to the global hot-free-page list */
  rcu_read_lock();
  struct free_page *next = atomic_load_explicit(&page_stack, memory_order_acquire);

  do atomic_store_explicit(&fp->next, next, memory_order_release);
  while (!atomic_compare_exchange_strong_explicit(
	&page_stack, &next, fp,
	memory_order_acq_rel, memory_order_acquire));
  rcu_read_unlock();

  /* And if there are too many global hot free pages, we ask for page cleanup */
  if (atomic_fetch_add_explicit(&pages_kept, 1, memory_order_relaxed) >= KEEP_PAGES_MAX)
    SCHEDULE_CLEANUP;
#endif
}

/* When the routine is going to sleep for a long time, we flush the local
 * hot page cache to not keep dirty pages for nothing. */
void
flush_local_pages(void)
{
  if (use_fake || !local_page_stack || shutting_down)
    return;

  /* We first count the pages to enable consistency checking.
   * Also, we need to know the last page. */
  struct free_page *last = local_page_stack, *next;
  int check_count = 1;
  while (next = atomic_load_explicit(&last->next, memory_order_acquire))
  {
    check_count++;
    last = next;
  }

  /* The actual number of pages must be equal to the counter value. */
  ASSERT_DIE(check_count == pages_kept_here);

  /* Repeatedly trying to insert the whole page list into global page stack at once. */
  rcu_read_lock();
  next = atomic_load_explicit(&page_stack, memory_order_acquire);

  /* First we set the outwards pointer (from our last),
   * then we try to set the inwards pointer to our first page. */
  do atomic_store_explicit(&last->next, next, memory_order_release);
  while (!atomic_compare_exchange_strong_explicit(
	&page_stack, &next, local_page_stack,
	memory_order_acq_rel, memory_order_acquire));
  rcu_read_unlock();

  /* Finished. Now the local stack is empty. */
  local_page_stack = NULL;
  pages_kept_here = 0;

  /* Check the state of global page cache and maybe schedule its cleanup. */
  atomic_fetch_sub_explicit(&pages_kept_locally, check_count, memory_order_relaxed);
  if (atomic_fetch_add_explicit(&pages_kept, check_count, memory_order_relaxed) >= KEEP_PAGES_MAX)
    SCHEDULE_CLEANUP;
}

#ifdef HAVE_MMAP
static void
page_cleanup(void *_ UNUSED)
{
  /* Cleanup on shutdown is ignored. All pages may be kept hot, OS will take care. */
  if (shutting_down)
    return;

  struct free_page *stack = atomic_exchange_explicit(&page_stack, NULL, memory_order_acq_rel);
  if (!stack)
    return;

  /* Cleanup gets called when hot free page cache is too big.
   * Moving some pages to the cold free page cache. */

  do {
    synchronize_rcu();
    struct free_page *fp = stack;
    stack = atomic_load_explicit(&fp->next, memory_order_acquire);

    LOCK_DOMAIN(resource, empty_pages_domain);
    /* Empty pages are stored as pointers. To store them, we need a pointer block. */
    if (!empty_pages || (empty_pages->pos == EP_POS_MAX))
    {
      /* There is either no pointer block or the last block is full. We use this block as a pointer block. */
      empty_pages = (struct empty_pages *) fp;
      *empty_pages = (struct empty_pages) {};
    }
    else
    {
      /* We store this block as a pointer into the first free place
       * and tell the OS that the underlying memory is trash. */
      empty_pages->pages[empty_pages->pos++] = fp;
      if (madvise(fp, page_size,
#ifdef CONFIG_MADV_DONTNEED_TO_FREE
	    MADV_DONTNEED
#else
	    MADV_FREE
#endif
	    ) < 0)
	bug("madvise(%p) failed: %m", fp);
    }
    UNLOCK_DOMAIN(resource, empty_pages_domain);
  }
  while ((atomic_fetch_sub_explicit(&pages_kept, 1, memory_order_relaxed) >= KEEP_PAGES_MAX / 2) && stack);

  while (stack)
  {
    struct free_page *f = stack;
    stack = atomic_load_explicit(&f->next, memory_order_acquire);
    free_page(f);

    atomic_fetch_sub_explicit(&pages_kept, 1, memory_order_relaxed);
  }
}
#endif

void
resource_sys_init(void)
{
#ifdef CONFIG_DISABLE_THP
  /* Disable transparent huge pages, they do not work properly with madvice(MADV_DONTNEED) */
  if (prctl(PR_SET_THP_DISABLE,  (unsigned long) 1,  (unsigned long) 0,  (unsigned long) 0,  (unsigned long) 0) < 0)
    die("prctl(PR_SET_THP_DISABLE) failed: %m");
#endif

#ifdef HAVE_MMAP
  /* Check what page size the system supports */
  if (!(page_size = sysconf(_SC_PAGESIZE)))
    die("System page size must be non-zero");

  if ((u64_popcount(page_size) == 1) && (page_size >= (1 << 10)) && (page_size <= (1 << 18)))
  {
    /* We assume that page size has only one bit and is between 1K and 256K (incl.).
     * Otherwise, the assumptions in lib/slab.c (sl_head's num_full range) aren't met. */

    empty_pages_domain = DOMAIN_NEW(resource, "Empty Pages");
    initialized = 1;
    return;
  }

  /* Too big or strange page, use the aligned allocator instead */
  log(L_WARN "Got strange memory page size (%ld), using the aligned allocator instead", (s64) page_size);
  use_fake = 1;
#endif

  page_size = 4096;
  initialized = 1;
}