summaryrefslogtreecommitdiff
path: root/lib/sha256.c
blob: 11ff2b05317c92fcefefabb779bcc8eb22f84c92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
/*
 *	BIRD Library -- SHA-256 and SHA-224 Hash Functions
 *
 *	(c) 2015 CZ.NIC z.s.p.o.
 *
 *	Based on the code from libgcrypt-1.6.0, which is
 *	(c) 2003, 2006, 2008, 2009 Free Software Foundation, Inc.
 *
 *	Can be freely distributed and used under the terms of the GNU GPL.
 */

#include "lib/sha256.h"
#include "lib/unaligned.h"


// #define SHA256_UNROLLED

void
sha256_init(struct hash_context *CTX)
{
  struct sha256_context *ctx = (void *) CTX;

  ctx->h0 = 0x6a09e667;
  ctx->h1 = 0xbb67ae85;
  ctx->h2 = 0x3c6ef372;
  ctx->h3 = 0xa54ff53a;
  ctx->h4 = 0x510e527f;
  ctx->h5 = 0x9b05688c;
  ctx->h6 = 0x1f83d9ab;
  ctx->h7 = 0x5be0cd19;

  ctx->nblocks = 0;
  ctx->count = 0;
}

void
sha224_init(struct hash_context *CTX)
{
  struct sha224_context *ctx = (void *) CTX;

  ctx->h0 = 0xc1059ed8;
  ctx->h1 = 0x367cd507;
  ctx->h2 = 0x3070dd17;
  ctx->h3 = 0xf70e5939;
  ctx->h4 = 0xffc00b31;
  ctx->h5 = 0x68581511;
  ctx->h6 = 0x64f98fa7;
  ctx->h7 = 0xbefa4fa4;

  ctx->nblocks = 0;
  ctx->count = 0;
}

/* (4.2) same as SHA-1's F1.  */
static inline u32
f1(u32 x, u32 y, u32 z)
{
  return (z ^ (x & (y ^ z)));
}

/* (4.3) same as SHA-1's F3 */
static inline u32
f3(u32 x, u32 y, u32 z)
{
  return ((x & y) | (z & (x|y)));
}

/* Bitwise rotation of an uint to the right */
static inline u32 ror(u32 x, int n)
{
  return ((x >> (n&(32-1))) | (x << ((32-n)&(32-1))));
}

/* (4.4) */
static inline u32
sum0(u32 x)
{
  return (ror(x, 2) ^ ror(x, 13) ^ ror(x, 22));
}

/* (4.5) */
static inline u32
sum1(u32 x)
{
  return (ror(x, 6) ^ ror(x, 11) ^ ror(x, 25));
}

/*
  Transform the message X which consists of 16 32-bit-words. See FIPS
  180-2 for details.  */
#define S0(x) (ror((x),  7) ^ ror((x), 18) ^ ((x) >>  3))	/* (4.6) */
#define S1(x) (ror((x), 17) ^ ror((x), 19) ^ ((x) >> 10))	/* (4.7) */
#define R(a,b,c,d,e,f,g,h,k,w)					\
    do								\
    {								\
      t1 = (h) + sum1((e)) + f1((e),(f),(g)) + (k) + (w);	\
      t2 = sum0((a)) + f3((a),(b),(c));				\
      h = g;							\
      g = f;							\
      f = e;							\
      e = d + t1;						\
      d = c;							\
      c = b;							\
      b = a;							\
      a = t1 + t2;						\
    } while (0)

/*
    The SHA-256 core: Transform the message X which consists of 16
    32-bit-words. See FIPS 180-2 for details.
 */
static uint
sha256_transform(struct sha256_context *ctx, const byte *data)
{
  static const u32 K[64] = {
      0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
      0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
      0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
      0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
      0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
      0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
      0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
      0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
      0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
      0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
      0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
      0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
      0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
      0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
      0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
      0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
  };

  u32 a,b,c,d,e,f,g,h,t1,t2;
  u32 w[64];
  int i;

  a = ctx->h0;
  b = ctx->h1;
  c = ctx->h2;
  d = ctx->h3;
  e = ctx->h4;
  f = ctx->h5;
  g = ctx->h6;
  h = ctx->h7;

  for (i = 0; i < 16; i++)
    w[i] = get_u32(data + i * 4);

  for (; i < 64; i++)
    w[i] = S1(w[i-2]) + w[i-7] + S0(w[i-15]) + w[i-16];

  for (i = 0; i < 64;)
  {
#ifndef SHA256_UNROLLED
    R(a,b,c,d,e,f,g,h,K[i],w[i]);
    i++;
#else /* Unrolled */
    t1 = h + sum1(e) + f1(e, f, g) + K[i] + w[i];
    t2 = sum0(a) + f3(a, b, c);
    d += t1;
    h  = t1 + t2;

    t1 = g + sum1(d) + f1(d, e, f) + K[i+1] + w[i+1];
    t2 = sum0(h) + f3(h, a, b);
    c += t1;
    g  = t1 + t2;

    t1 = f + sum1(c) + f1(c, d, e) + K[i+2] + w[i+2];
    t2 = sum0(g) + f3(g, h, a);
    b += t1;
    f  = t1 + t2;

    t1 = e + sum1(b) + f1(b, c, d) + K[i+3] + w[i+3];
    t2 = sum0(f) + f3(f, g, h);
    a += t1;
    e  = t1 + t2;

    t1 = d + sum1(a) + f1(a, b, c) + K[i+4] + w[i+4];
    t2 = sum0(e) + f3(e, f, g);
    h += t1;
    d  = t1 + t2;

    t1 = c + sum1(h) + f1(h, a, b) + K[i+5] + w[i+5];
    t2 = sum0(d) + f3(d, e, f);
    g += t1;
    c  = t1 + t2;

    t1 = b + sum1(g) + f1(g, h, a) + K[i+6] + w[i+6];
    t2 = sum0(c) + f3(c, d, e);
    f += t1;
    b  = t1 + t2;

    t1 = a + sum1(f) + f1(f, g, h) + K[i+7] + w[i+7];
    t2 = sum0(b) + f3(b, c, d);
    e += t1;
    a  = t1 + t2;

    i += 8;
#endif
  }

  ctx->h0 += a;
  ctx->h1 += b;
  ctx->h2 += c;
  ctx->h3 += d;
  ctx->h4 += e;
  ctx->h5 += f;
  ctx->h6 += g;
  ctx->h7 += h;

  return /*burn_stack*/ 74*4+32;
}
#undef S0
#undef S1
#undef R

/* Common function to write a chunk of data to the transform function
   of a hash algorithm.  Note that the use of the term "block" does
   not imply a fixed size block.  Note that we explicitly allow to use
   this function after the context has been finalized; the result does
   not have any meaning but writing after finalize is sometimes
   helpful to mitigate timing attacks. */
void
sha256_update(struct hash_context *CTX, const byte *buf, uint len)
{
  struct sha256_context *ctx = (void *) CTX;

  if (ctx->count)
  {
    /* Fill rest of internal buffer */
    for (; len && ctx->count < SHA256_BLOCK_SIZE; len--)
      ctx->buf[ctx->count++] = *buf++;

    if (ctx->count < SHA256_BLOCK_SIZE)
      return;

    /* Process data from internal buffer */
    sha256_transform(ctx, ctx->buf);
    ctx->nblocks++;
    ctx->count = 0;
  }

  if (!len)
    return;

  /* Process data from input buffer */
  while (len >= SHA256_BLOCK_SIZE)
  {
    sha256_transform(ctx, buf);
    ctx->nblocks++;
    buf += SHA256_BLOCK_SIZE;
    len -= SHA256_BLOCK_SIZE;
  }

  /* Copy remaining data to internal buffer */
  memcpy(ctx->buf, buf, len);
  ctx->count = len;
}

/*
 * The routine finally terminates the computation and returns the digest.  The
 * handle is prepared for a new cycle, but adding bytes to the handle will the
 * destroy the returned buffer.
 *
 * Returns: 32 bytes with the message the digest. 28 bytes for SHA-224.
 */
byte *
sha256_final(struct hash_context *CTX)
{
  struct sha256_context *ctx = (void *) CTX;
  u32 t, th, msb, lsb;

  sha256_update(CTX, NULL, 0);	/* flush */

  t = ctx->nblocks;
  th = 0;

  /* multiply by 64 to make a byte count */
  lsb = t << 6;
  msb = (th << 6) | (t >> 26);
  /* add the count */
  t = lsb;
  if ((lsb += ctx->count) < t)
    msb++;
  /* multiply by 8 to make a bit count */
  t = lsb;
  lsb <<= 3;
  msb <<= 3;
  msb |= t >> 29;

  if (ctx->count < 56)
  {
    /* enough room */
    ctx->buf[ctx->count++] = 0x80; /* pad */
    while (ctx->count < 56)
      ctx->buf[ctx->count++] = 0;  /* pad */
  }
  else
  {
    /* need one extra block */
    ctx->buf[ctx->count++] = 0x80; /* pad character */
    while (ctx->count < 64)
      ctx->buf[ctx->count++] = 0;
    sha256_update(CTX, NULL, 0);  /* flush */;
    memset(ctx->buf, 0, 56 ); /* fill next block with zeroes */
  }

  /* append the 64 bit count */
  put_u32(ctx->buf + 56, msb);
  put_u32(ctx->buf + 60, lsb);
  sha256_transform(ctx, ctx->buf);

  byte *p = ctx->buf;
#define X(a) do { put_u32(p, ctx->h##a); p += 4; } while(0)
  X(0);
  X(1);
  X(2);
  X(3);
  X(4);
  X(5);
  X(6);
  X(7);
#undef X

  return ctx->buf;
}