1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
|
/*
* BIRD Resource Manager -- Memory Pools
*
* (c) 1998--2000 Martin Mares <mj@ucw.cz>
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
/**
* DOC: Linear memory pools
*
* Linear memory pools are collections of memory blocks which
* support very fast allocation of new blocks, but are able to free only
* the whole collection at once (or in stack order).
*
* Example: Each configuration is described by a complex system of structures,
* linked lists and function trees which are all allocated from a single linear
* pool, thus they can be freed at once when the configuration is no longer used.
*/
#include <stdlib.h>
#include <stdint.h>
#include "nest/bird.h"
#include "lib/resource.h"
#include "lib/string.h"
struct lp_chunk {
struct lp_chunk *next;
uint size;
uintptr_t data_align[0];
byte data[0];
};
const int lp_chunk_size = sizeof(struct lp_chunk);
struct linpool {
resource r;
byte *ptr, *end;
struct lp_chunk *first, *current; /* Normal (reusable) chunks */
struct lp_chunk *first_large; /* Large chunks */
uint chunk_size, threshold, total, total_large;
};
static void lp_free(resource *);
static void lp_dump(resource *);
static resource *lp_lookup(resource *, unsigned long);
static struct resmem lp_memsize(resource *r);
static struct resclass lp_class = {
"LinPool",
sizeof(struct linpool),
lp_free,
lp_dump,
lp_lookup,
lp_memsize
};
/**
* lp_new - create a new linear memory pool
* @p: pool
* @blk: block size
*
* lp_new() creates a new linear memory pool resource inside the pool @p.
* The linear pool consists of a list of memory chunks of size at least
* @blk.
*/
linpool
*lp_new(pool *p, uint blk)
{
linpool *m = ralloc(p, &lp_class);
m->chunk_size = blk;
m->threshold = 3*blk/4;
return m;
}
/**
* lp_alloc - allocate memory from a &linpool
* @m: linear memory pool
* @size: amount of memory
*
* lp_alloc() allocates @size bytes of memory from a &linpool @m
* and it returns a pointer to the allocated memory.
*
* It works by trying to find free space in the last memory chunk
* associated with the &linpool and creating a new chunk of the standard
* size (as specified during lp_new()) if the free space is too small
* to satisfy the allocation. If @size is too large to fit in a standard
* size chunk, an "overflow" chunk is created for it instead.
*/
void *
lp_alloc(linpool *m, uint size)
{
byte *a = (byte *) BIRD_ALIGN((unsigned long) m->ptr, CPU_STRUCT_ALIGN);
byte *e = a + size;
if (e <= m->end)
{
m->ptr = e;
return a;
}
else
{
struct lp_chunk *c;
if (size >= m->threshold)
{
/* Too large => allocate large chunk */
c = xmalloc(sizeof(struct lp_chunk) + size);
m->total_large += size;
c->next = m->first_large;
m->first_large = c;
c->size = size;
}
else
{
if (m->current && m->current->next)
{
/* Still have free chunks from previous incarnation (before lp_flush()) */
c = m->current->next;
}
else
{
/* Need to allocate a new chunk */
c = xmalloc(sizeof(struct lp_chunk) + m->chunk_size);
m->total += m->chunk_size;
c->next = NULL;
c->size = m->chunk_size;
if (m->current)
m->current->next = c;
else
m->first = c;
}
m->current = c;
m->ptr = c->data + size;
m->end = c->data + m->chunk_size;
}
return c->data;
}
}
/**
* lp_allocu - allocate unaligned memory from a &linpool
* @m: linear memory pool
* @size: amount of memory
*
* lp_allocu() allocates @size bytes of memory from a &linpool @m
* and it returns a pointer to the allocated memory. It doesn't
* attempt to align the memory block, giving a very efficient way
* how to allocate strings without any space overhead.
*/
void *
lp_allocu(linpool *m, uint size)
{
byte *a = m->ptr;
byte *e = a + size;
if (e <= m->end)
{
m->ptr = e;
return a;
}
return lp_alloc(m, size);
}
/**
* lp_allocz - allocate cleared memory from a &linpool
* @m: linear memory pool
* @size: amount of memory
*
* This function is identical to lp_alloc() except that it
* clears the allocated memory block.
*/
void *
lp_allocz(linpool *m, uint size)
{
void *z = lp_alloc(m, size);
bzero(z, size);
return z;
}
/**
* lp_flush - flush a linear memory pool
* @m: linear memory pool
*
* This function frees the whole contents of the given &linpool @m,
* but leaves the pool itself.
*/
void
lp_flush(linpool *m)
{
struct lp_chunk *c;
/* Move ptr to the first chunk and free all large chunks */
m->current = c = m->first;
m->ptr = c ? c->data : NULL;
m->end = c ? c->data + m->chunk_size : NULL;
while (c = m->first_large)
{
m->first_large = c->next;
xfree(c);
}
m->total_large = 0;
}
/**
* lp_save - save the state of a linear memory pool
* @m: linear memory pool
* @p: state buffer
*
* This function saves the state of a linear memory pool. Saved state can be
* used later to restore the pool (to free memory allocated since).
*/
void
lp_save(linpool *m, lp_state *p)
{
p->current = m->current;
p->large = m->first_large;
p->ptr = m->ptr;
}
/**
* lp_restore - restore the state of a linear memory pool
* @m: linear memory pool
* @p: saved state
*
* This function restores the state of a linear memory pool, freeing all memory
* allocated since the state was saved. Note that the function cannot un-free
* the memory, therefore the function also invalidates other states that were
* saved between (on the same pool).
*/
void
lp_restore(linpool *m, lp_state *p)
{
struct lp_chunk *c;
/* Move ptr to the saved pos and free all newer large chunks */
m->current = c = p->current;
m->ptr = p->ptr;
m->end = c ? c->data + m->chunk_size : NULL;
while ((c = m->first_large) && (c != p->large))
{
m->first_large = c->next;
m->total_large -= c->size;
xfree(c);
}
}
static void
lp_free(resource *r)
{
linpool *m = (linpool *) r;
struct lp_chunk *c, *d;
for(d=m->first; d; d = c)
{
c = d->next;
xfree(d);
}
for(d=m->first_large; d; d = c)
{
c = d->next;
xfree(d);
}
}
static void
lp_dump(resource *r)
{
linpool *m = (linpool *) r;
struct lp_chunk *c;
int cnt, cntl;
for(cnt=0, c=m->first; c; c=c->next, cnt++)
;
for(cntl=0, c=m->first_large; c; c=c->next, cntl++)
;
debug("(chunk=%d threshold=%d count=%d+%d total=%d+%d)\n",
m->chunk_size,
m->threshold,
cnt,
cntl,
m->total,
m->total_large);
}
static struct resmem
lp_memsize(resource *r)
{
linpool *m = (linpool *) r;
struct lp_chunk *c;
int cnt = 0;
for(c=m->first; c; c=c->next)
cnt++;
for(c=m->first_large; c; c=c->next)
cnt++;
return (struct resmem) {
.effective = m->total + m->total_large,
.overhead = ALLOC_OVERHEAD + sizeof(struct linpool) +
cnt * (ALLOC_OVERHEAD + sizeof(struct lp_chunk)),
};
}
static resource *
lp_lookup(resource *r, unsigned long a)
{
linpool *m = (linpool *) r;
struct lp_chunk *c;
for(c=m->first; c; c=c->next)
if ((unsigned long) c->data <= a && (unsigned long) c->data + c->size > a)
return r;
for(c=m->first_large; c; c=c->next)
if ((unsigned long) c->data <= a && (unsigned long) c->data + c->size > a)
return r;
return NULL;
}
|