summaryrefslogtreecommitdiff
path: root/filter/trie.c
blob: 12ba0b82b10bf4b89c760f8efbe751d12a5bc0dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
/*
 *	Filters: Trie for prefix sets
 *
 *	(c) 2009--2021 Ondrej Zajicek <santiago@crfreenet.org>
 *	(c) 2009--2021 CZ.NIC z.s.p.o.
 *
 *	Can be freely distributed and used under the terms of the GNU GPL.
 */

/**
 * DOC: Trie for prefix sets
 *
 * We use a (compressed) trie to represent prefix sets. Every node in the trie
 * represents one prefix (&addr/&plen) and &plen also indicates the index of
 * bits in the address that are used to branch at the node. Note that such
 * prefix is not necessary a member of the prefix set, it is just a canonical
 * prefix associated with a node. Prefix lengths of nodes are aligned to
 * multiples of &TRIE_STEP (4) and there is 16-way branching in each
 * node. Therefore, we say that a node is associated with a range of prefix
 * lengths (&plen .. &plen + TRIE_STEP - 1).
 *
 * The prefix set is not just a set of prefixes, it is defined by a set of
 * prefix patterns. Each prefix pattern consists of &ppaddr/&pplen and two
 * integers: &low and &high. The tested prefix &paddr/&plen matches that pattern
 * if the first MIN(&plen, &pplen) bits of &paddr and &ppaddr are the same and
 * &low <= &plen <= &high.
 *
 * There are two ways to represent accepted prefixes for a node. First, there is
 * a bitmask &local, which represents independently all 15 prefixes that extend
 * the canonical prefix of the node and are within a range of prefix lengths
 * associated with the node. E.g., for node 10.0.0.0/8 they are 10.0.0.0/8,
 * 10.0.0.0/9, 10.128.0.0/9, .. 10.224.0.0/11. This order (first by length, then
 * lexicographically) is used for indexing the bitmask &local, starting at
 * position 1. I.e., index is 2^(plen - base) + offset within the same length,
 * see function trie_local_mask6() for details.
 *
 * Second, we use a bitmask &accept to represent accepted prefix lengths at a
 * node. The bit is set means that all prefixes of given length that are either
 * subprefixes or superprefixes of the canonical prefix are accepted. As there
 * are 33 prefix lengths (0..32 for IPv4), but there is just one prefix of zero
 * length in the whole trie so we have &zero flag in &f_trie (indicating whether
 * the trie accepts prefix 0.0.0.0/0) as a special case, and &accept bitmask
 * represents accepted prefix lengths from 1 to 32.
 *
 * One complication is handling of prefix patterns with unaligned prefix length.
 * When such pattern is to be added, we add a primary node above (with rounded
 * down prefix length &nlen) and a set of secondary nodes below (with rounded up
 * prefix lengths &slen). Accepted prefix lengths of the original prefix pattern
 * are then represented in different places based on their lengths. For prefixes
 * shorter than &nlen, it is &accept bitmask of the primary node, for prefixes
 * between &nlen and &slen - 1 it is &local bitmask of the primary node, and for
 * prefixes longer of equal &slen it is &accept bitmasks of secondary nodes.
 *
 * There are two cases in prefix matching - a match when the length of the
 * prefix is smaller that the length of the prefix pattern, (&plen < &pplen) and
 * otherwise. The second case is simple - we just walk through the trie and look
 * at every visited node whether that prefix accepts our prefix length (&plen).
 * The first case is tricky - we do not want to examine every descendant of a
 * final node, so (when we create the trie) we have to propagate that
 * information from nodes to their ascendants.
 *
 * There are two kinds of propagations - propagation from child's &accept
 * bitmask to parent's &accept bitmask, and propagation from child's &accept
 * bitmask to parent's &local bitmask. The first kind is simple - as all
 * superprefixes of a parent are also all superprefixes of appropriate length of
 * a child, then we can just add (by bitwise or) a child &accept mask masked by
 * parent prefix length mask to the parent &accept mask. This handles prefixes
 * shorter than node &plen.
 *
 * The second kind of propagation is necessary to handle superprefixes of a
 * child that are represented by parent &local mask - that are in the range of
 * prefix lengths associated with the parent. For each accepted (by child
 * &accept mask) prefix length from that range, we need to set appropriate bit
 * in &local mask. See function trie_amask_to_local() for details.
 *
 * There are four cases when we walk through a trie:
 *
 * - we are in NULL
 * - we are out of path (prefixes are inconsistent)
 * - we are in the wanted (final) node (node length == &plen)
 * - we are beyond the end of path (node length > &plen)
 * - we are still on path and keep walking (node length < &plen)
 *
 * The walking code in trie_match_net() is structured according to these cases.
 *
 * Iteration over prefixes in a trie can be done using TRIE_WALK() macro, or
 * directly using trie_walk_init() and trie_walk_next() functions. The second
 * approach allows suspending the iteration and continuing in it later.
 * Prefixes are enumerated in the usual lexicographic order and may be
 * restricted to a subset of the trie (all subnets of a specified prefix).
 *
 * Note that the trie walk does not reliably enumerate `implicit' prefixes
 * defined by &low and &high fields in prefix patterns, it is supposed to be
 * used on tries constructed from `explicit' prefixes (&low == &plen == &high
 * in call to trie_add_prefix()).
 *
 * The trie walk has three basic state variables stored in the struct
 * &f_trie_walk_state -- the current node in &stack[stack_pos], &accept_length
 * for iteration over inter-node prefixes (non-branching prefixes on compressed
 * path between the current node and its parent node, stored in the bitmap
 * &accept of the current node) and &local_pos for iteration over intra-node
 * prefixes (stored in the bitmap &local).
 *
 * The trie also supports longest-prefix-match query by trie_match_longest_ip4()
 * and it can be extended to iteration over all covering prefixes for a given
 * prefix (from longest to shortest) using TRIE_WALK_TO_ROOT_IP4() macro. There
 * are also IPv6 versions (for practical reasons, these functions and macros are
 * separate for IPv4 and IPv6). There is the same limitation to enumeration of
 * `implicit' prefixes like with the previous TRIE_WALK() macro.
 */

#include "nest/bird.h"
#include "lib/string.h"
#include "conf/conf.h"
#include "filter/filter.h"
#include "filter/data.h"


/*
 * In the trie_add_prefix(), we use ip_addr (assuming that it is the same as
 * ip6_addr) to handle both IPv4 and IPv6 prefixes. In contrast to rest of the
 * BIRD, IPv4 addresses are just zero-padded from right. That is why we have
 * ipt_from_ip4() and ipt_to_ip4() macros below.
 */

#define ipa_mkmask(x) ip6_mkmask(x)
#define ipa_masklen(x) ip6_masklen(&x)
#define ipa_pxlen(x,y) ip6_pxlen(x,y)
#define ipa_getbit(a,p) ip6_getbit(a,p)
#define ipa_getbits(a,p,n) ip6_getbits(a,p,n)
#define ipa_setbits(a,p,n) ip6_setbits(a,p,n)
#define trie_local_mask(a,b,c) trie_local_mask6(a,b,c)

#define ipt_from_ip4(x) _MI6(_I(x), 0, 0, 0)
#define ipt_to_ip4(x) _MI4(_I0(x))


/**
 * f_new_trie - allocates and returns a new empty trie
 * @lp: linear pool to allocate items from
 * @data_size: user data attached to node
 */
struct f_trie *
f_new_trie(linpool *lp, uint data_size)
{
  struct f_trie * ret;
  ret = lp_allocz(lp, sizeof(struct f_trie) + data_size);
  ret->lp = lp;
  ret->ipv4 = -1;
  ret->data_size = data_size;
  return ret;
}

static inline struct f_trie_node4 *
new_node4(struct f_trie *t, uint plen, uint local, ip4_addr paddr, ip4_addr pmask, ip4_addr amask)
{
  struct f_trie_node4 *n = lp_allocz(t->lp, sizeof(struct f_trie_node4) + t->data_size);
  n->plen = plen;
  n->local = local;
  n->addr = paddr;
  n->mask = pmask;
  n->accept = amask;
  return n;
}

static inline struct f_trie_node6 *
new_node6(struct f_trie *t, uint plen, uint local, ip6_addr paddr, ip6_addr pmask, ip6_addr amask)
{
  struct f_trie_node6 *n = lp_allocz(t->lp, sizeof(struct f_trie_node6) + t->data_size);
  n->plen = plen;
  n->local = local;
  n->addr = paddr;
  n->mask = pmask;
  n->accept = amask;
  return n;
}

static inline struct f_trie_node *
new_node(struct f_trie *t, uint plen, uint local, ip_addr paddr, ip_addr pmask, ip_addr amask)
{
  if (t->ipv4)
    return (struct f_trie_node *) new_node4(t, plen, local, ipt_to_ip4(paddr), ipt_to_ip4(pmask), ipt_to_ip4(amask));
  else
    return (struct f_trie_node *) new_node6(t, plen, local, ipa_to_ip6(paddr), ipa_to_ip6(pmask), ipa_to_ip6(amask));
}

static inline void
attach_node4(struct f_trie_node4 *parent, struct f_trie_node4 *child)
{
  parent->c[ip4_getbits(child->addr, parent->plen, TRIE_STEP)] = child;
}

static inline void
attach_node6(struct f_trie_node6 *parent, struct f_trie_node6 *child)
{
  parent->c[ip6_getbits(child->addr, parent->plen, TRIE_STEP)] = child;
}

static inline void
attach_node(struct f_trie_node *parent, struct f_trie_node *child, int v4)
{
  if (v4)
    attach_node4(&parent->v4, &child->v4);
  else
    attach_node6(&parent->v6, &child->v6);
}


/*
 * Internal prefixes of a node a represented by the local bitmask, each bit for
 * one prefix. Bit 0 is unused, Bit 1 is for the main prefix of the node,
 * remaining bits correspond to subprefixes by this pattern:
 *
 *          1
 *      2       3
 *    4   5   6   7
 *   8 9 A B C D E F
 *
 * E.g. for 10.0.0.0/8 node, the 10.64.0.0/10 would be position 5.
 */

/*
 * Compute appropriate mask representing prefix px/plen in local bitmask of node
 * with prefix length nlen. Assuming that nlen <= plen < (nlen + TRIE_STEP).
 */
static inline uint
trie_local_mask4(ip4_addr px, uint plen, uint nlen)
{
  uint step = plen - nlen;
  uint pos = (1u << step) + ip4_getbits(px, nlen, step);
  return 1u << pos;
}

static inline uint
trie_local_mask6(ip6_addr px, uint plen, uint nlen)
{
  uint step = plen - nlen;
  uint pos = (1u << step) + ip6_getbits(px, nlen, step);
  return 1u << pos;
}

/*
 * Compute an appropriate local mask (for a node with prefix length nlen)
 * representing prefixes of px that are accepted by amask and fall within the
 * range associated with that node. Used for propagation of child accept mask
 * to parent local mask.
 */
static inline uint
trie_amask_to_local(ip_addr px, ip_addr amask, uint nlen)
{
  uint local = 0;

  for (uint plen = MAX(nlen, 1); plen < (nlen + TRIE_STEP); plen++)
    if (ipa_getbit(amask, plen - 1))
      local |= trie_local_mask(px, plen, nlen);

  return local;
}

/*
 * Compute a bitmask representing a level of subprefixes (of the same length),
 * using specified position as a root. E.g., level 2 from root position 3 would
 * be bit positions C-F, returned as bitmask 0xf000.
 */
static inline uint
trie_level_mask(uint pos, uint level)
{
  return ((1u << (1u << level)) - 1) << (pos << level);
}


#define GET_ADDR(N,F,X) ((X) ? ipt_from_ip4((N)->v4.F) : ipa_from_ip6((N)->v6.F))
#define SET_ADDR(N,F,X,V) ({ if (X) (N)->v4.F =ipt_to_ip4(V); else (N)->v6.F =ipa_to_ip6(V); })

#define GET_LOCAL(N,X) ((X) ? (N)->v4.local : (N)->v6.local)
#define ADD_LOCAL(N,X,V) ({ uint v_ = (V); if (X) (N)->v4.local |= v_; else (N)->v6.local |= v_; })

#define GET_CHILD(N,X,I) ((X) ? (struct f_trie_node *) (N)->v4.c[I] : (struct f_trie_node *) (N)->v6.c[I])


static void *
trie_add_node(struct f_trie *t, uint plen, ip_addr px, uint local, uint l, uint h)
{
  uint l_ = l ? (l - 1) : 0;
  ip_addr amask = (l_ < h) ? ipa_xor(ipa_mkmask(l_), ipa_mkmask(h)) : IPA_NONE;
  ip_addr pmask = ipa_mkmask(plen);
  ip_addr paddr = ipa_and(px, pmask);
  struct f_trie_node *o = NULL;
  struct f_trie_node *n = &t->root;
  int v4 = t->ipv4;

  /* Add all bits for each active level (0x0002 0x000c 0x00f0 0xff00) */
  for (uint i = 0; i < TRIE_STEP; i++)
    if ((l <= (plen + i)) && ((plen + i) <= h))
      local |= trie_level_mask(1, i);

  DBG("Insert node %I/%u (%I %x)\n", paddr, plen, amask, local);
  while (n)
    {
      ip_addr naddr = GET_ADDR(n, addr, v4);
      ip_addr nmask = GET_ADDR(n, mask, v4);
      ip_addr accept = GET_ADDR(n, accept, v4);
      ip_addr cmask = ipa_and(nmask, pmask);
      uint nlen = v4 ? n->v4.plen : n->v6.plen;

      DBG("Found node %I/%u (%I %x)\n",
	  naddr, nlen, accept, v4 ? n->v4.local : n->v6.local);

      if (ipa_compare(ipa_and(paddr, cmask), ipa_and(naddr, cmask)))
        {
	  /* We are out of path - we have to add branching node 'b'
	     between node 'o' and node 'n', and attach new node 'a'
	     as the other child of 'b'. */
	  int blen = ROUND_DOWN_POW2(ipa_pxlen(paddr, naddr), TRIE_STEP);
	  ip_addr bmask = ipa_mkmask(blen);
	  ip_addr baddr = ipa_and(px, bmask);

	  /* Merge accept masks from children to get accept mask for node 'b' */
	  ip_addr baccm = ipa_and(ipa_or(amask, accept), bmask);
	  uint bloc = trie_amask_to_local(naddr, accept, blen) |
	              trie_amask_to_local(paddr, amask, blen);

	  struct f_trie_node *a = new_node(t, plen, local, paddr, pmask, amask);
	  struct f_trie_node *b = new_node(t, blen, bloc, baddr, bmask, baccm);
	  attach_node(o, b, v4);
	  attach_node(b, n, v4);
	  attach_node(b, a, v4);
	  t->prefix_count++;

	  DBG("Case 1\n");
	  return a;
	}

      if (plen < nlen)
	{
	  /* We add new node 'a' between node 'o' and node 'n' */
	  amask = ipa_or(amask, ipa_and(accept, pmask));
	  local |= trie_amask_to_local(naddr, accept, plen);
	  struct f_trie_node *a = new_node(t, plen, local, paddr, pmask, amask);
	  attach_node(o, a, v4);
	  attach_node(a, n, v4);
	  t->prefix_count++;

	  DBG("Case 2\n");
	  return a;
	}

      if (plen == nlen)
	{
	  /* We already found added node in trie. Just update accept and local mask */
	  accept = ipa_or(accept, amask);
	  SET_ADDR(n, accept, v4, accept);

	  if ((GET_LOCAL(n, v4) & local) != local)
	    t->prefix_count++;

	  ADD_LOCAL(n, v4, local);

	  DBG("Case 3\n");
	  return n;
	}

      /* Update accept mask part M2 and go deeper */
      accept = ipa_or(accept, ipa_and(amask, nmask));
      SET_ADDR(n, accept, v4, accept);
      ADD_LOCAL(n, v4, trie_amask_to_local(paddr, amask, nlen));

      DBG("Step %u\n", ipa_getbits(paddr, nlen));

      /* n->plen < plen and plen <= 32 (128) */
      o = n;
      n = GET_CHILD(n, v4, ipa_getbits(paddr, nlen, TRIE_STEP));
    }

  /* We add new tail node 'a' after node 'o' */
  struct f_trie_node *a = new_node(t, plen, local, paddr, pmask, amask);
  attach_node(o, a, v4);
  t->prefix_count++;

  DBG("Case 4\n");
  return a;
}

/**
 * trie_add_prefix
 * @t: trie to add to
 * @net: IP network prefix
 * @l: prefix lower bound
 * @h: prefix upper bound
 *
 * Adds prefix (prefix pattern) @n to trie @t.  @l and @h are lower
 * and upper bounds on accepted prefix lengths, both inclusive.
 * 0 <= l, h <= 32 (128 for IPv6).
 *
 * Returns a pointer to the allocated node. The function can return a pointer to
 * an existing node if @px and @plen are the same. If px/plen == 0/0 (or ::/0),
 * a pointer to the root node is returned. Returns NULL when called with
 * mismatched IPv4/IPv6 net type.
 */
void *
trie_add_prefix(struct f_trie *t, const net_addr *net, uint l, uint h)
{
  uint plen = net_pxlen(net);
  ip_addr px;
  int v4;

  switch (net->type)
  {
  case NET_IP4:
  case NET_VPN4:
  case NET_ROA4:
    px = ipt_from_ip4(net4_prefix(net));
    v4 = 1;
    break;

  case NET_IP6:
  case NET_VPN6:
  case NET_ROA6:
  case NET_IP6_SADR:
    px = ipa_from_ip6(net6_prefix(net));
    v4 = 0;
    break;

  default:
    bug("invalid type");
  }

  if (t->ipv4 != v4)
  {
    if (t->ipv4 < 0)
      t->ipv4 = v4;
    else
      return NULL;
  }

  DBG("\nInsert net %N (%u-%u)\n", net, l, h);

  if (l == 0)
    t->zero = 1;

  if (h < plen)
    plen = h;

  /* Primary node length, plen rounded down */
  uint nlen = ROUND_DOWN_POW2(plen, TRIE_STEP);

  if (plen == nlen)
    return trie_add_node(t, nlen, px, 0, l,  h);

  /* Secondary node length, plen rouned up */
  uint slen = nlen + TRIE_STEP;
  void *node = NULL;

  /*
   * For unaligned prefix lengths it is more complicated. We need to encode
   * matching prefixes of lengths from l to h. There are three cases of lengths:
   *
   * 1) 0..nlen are encoded by the accept mask of the primary node
   * 2) nlen..(slen-1) are encoded by the local mask of the primary node
   * 3) slen..max are encoded in secondary nodes
   */

  if (l < slen)
  {
    uint local = 0;

    /* Compute local bits for accepted nlen..(slen-1) prefixes */
    for (uint i = 0; i < TRIE_STEP; i++)
      if ((l <= (nlen + i)) && ((nlen + i) <= h))
      {
	uint pos = (1u << i) + ipa_getbits(px, nlen, i);
	uint len = ((nlen + i) <= plen) ? 1 : (1u << (nlen + i - plen));

	/* We need to fill 'len' bits starting at 'pos' position */
	local |= ((1u << len) - 1) << pos;
      }

    /* Add the primary node */
    node = trie_add_node(t, nlen, px, local, l,  nlen);
  }

  if (slen <= h)
  {
    uint l2 = MAX(l, slen);
    uint max = (1u << (slen - plen));

    /* Add secondary nodes */
    for (uint i = 0; i < max; i++)
      node = trie_add_node(t, slen, ipa_setbits(px,  slen - 1, i), 0, l2,  h);
  }

  return node;
}


static int
trie_match_net4(const struct f_trie *t, ip4_addr px, uint plen)
{
  if (plen == 0)
    return t->zero;

  int plentest = plen - 1;
  uint nlen = ROUND_DOWN_POW2(plen, TRIE_STEP);
  uint local = trie_local_mask4(px, plen, nlen);
  const struct f_trie_node4 *n = &t->root.v4;

  while (n)
  {
    /* We are out of path */
    if (!ip4_prefix_equal(px, n->addr, MIN(plen, n->plen)))
      return 0;

    /* Check local mask */
    if ((n->plen == nlen) && (n->local & local))
      return 1;

    /* Check accept mask */
    if (ip4_getbit(n->accept, plentest))
      return 1;

    /* We finished trie walk and still no match */
    if (nlen <= n->plen)
      return 0;

    /* Choose children */
    n =  n->c[ip4_getbits(px, n->plen, TRIE_STEP)];
  }

  return 0;
}

static int
trie_match_net6(const struct f_trie *t, ip6_addr px, uint plen)
{
  if (plen == 0)
    return t->zero;

  int plentest = plen - 1;
  uint nlen = ROUND_DOWN_POW2(plen, TRIE_STEP);
  uint local = trie_local_mask6(px, plen, nlen);
  const struct f_trie_node6 *n = &t->root.v6;

  while (n)
  {
    /* We are out of path */
    if (!ip6_prefix_equal(px, n->addr, MIN(plen, n->plen)))
      return 0;

    /* Check local mask */
    if ((n->plen == nlen) && (n->local & local))
      return 1;

    /* Check accept mask */
    if (ip6_getbit(n->accept, plentest))
      return 1;

    /* We finished trie walk and still no match */
    if (nlen <= n->plen)
      return 0;

    /* Choose children */
    n =  n->c[ip6_getbits(px, n->plen, TRIE_STEP)];
  }

  return 0;
}

/**
 * trie_match_net
 * @t: trie
 * @n: net address
 *
 * Tries to find a matching net in the trie such that
 * prefix @n matches that prefix pattern. Returns 1 if there
 * is such prefix pattern in the trie.
 */
int
trie_match_net(const struct f_trie *t, const net_addr *n)
{
  switch (n->type)
  {
  case NET_IP4:
  case NET_VPN4:
  case NET_ROA4:
    return t->ipv4 ? trie_match_net4(t, net4_prefix(n), net_pxlen(n)) : 0;

  case NET_IP6:
  case NET_VPN6:
  case NET_ROA6:
    return !t->ipv4 ? trie_match_net6(t, net6_prefix(n), net_pxlen(n)) : 0;

  default:
    return 0;
  }
}


/**
 * trie_match_longest_ip4
 * @t: trie
 * @net: net address
 * @dst: return value
 * @found0: optional returned bitmask of found nodes
 *
 * Perform longest prefix match for the address @net and return the resulting
 * prefix in the buffer @dst. The bitmask @found0 is used to report lengths of
 * prefixes on the path from the root to the resulting prefix. E.g., if there is
 * also a /20 shorter matching prefix, then 20-th bit is set in @found0. This
 * can be used to enumerate all matching prefixes for the network @net using
 * function trie_match_next_longest_ip4() or macro TRIE_WALK_TO_ROOT_IP4().
 *
 * This function assumes IPv4 trie, there is also an IPv6 variant. The @net
 * argument is typed as net_addr_ip4, but would accept any IPv4-based net_addr,
 * like net4_prefix(). Anyway, returned @dst is always net_addr_ip4.
 *
 * Result: 1 if a matching prefix was found, 0 if not.
 */
int
trie_match_longest_ip4(const struct f_trie *t, const net_addr_ip4 *net, net_addr_ip4 *dst, ip4_addr *found0)
{
  ASSERT(t->ipv4);

  const ip4_addr prefix = net->prefix;
  const int pxlen = net->pxlen;

  const struct f_trie_node4 *n = &t->root.v4;
  int len = 0;

  ip4_addr found = IP4_NONE;
  int last = -1;

  while (n)
  {
    /* We are out of path */
    if (!ip4_prefix_equal(prefix, n->addr, MIN(pxlen, n->plen)))
      goto done;

    /* Check accept mask */
    for (; len < n->plen; len++)
    {
      if (len > pxlen)
	goto done;

      if (ip4_getbit(n->accept, len - 1))
      {
	/* len is always < 32 due to len < n->plen */
	ip4_setbit(&found, len);
	last = len;
      }
    }

    /* Special case for max length, there is only one valid local position */
    if (len == IP4_MAX_PREFIX_LENGTH)
    {
      if (n->local & (1u << 1))
	last = len;

      goto done;
    }

    /* Check local mask */
    for (int pos = 1; pos < (1 << TRIE_STEP); pos = 2 * pos + ip4_getbit(prefix, len), len++)
    {
      if (len > pxlen)
	goto done;

      if (n->local & (1u << pos))
      {
	/* len is always < 32 due to special case above */
	ip4_setbit(&found, len);
	last = len;
      }
    }

    /* Choose child */
    n = n->c[ip4_getbits(prefix, n->plen, TRIE_STEP)];
  }

done:
  if (last < 0)
    return 0;

  *dst = NET_ADDR_IP4(ip4_and(prefix, ip4_mkmask(last)), last);

  if (found0)
    *found0 = found;

  return 1;
}


/**
 * trie_match_longest_ip6
 * @t: trie
 * @net: net address
 * @dst: return value
 * @found0: optional returned bitmask of found nodes
 *
 * Perform longest prefix match for the address @net and return the resulting
 * prefix in the buffer @dst. The bitmask @found0 is used to report lengths of
 * prefixes on the path from the root to the resulting prefix. E.g., if there is
 * also a /20 shorter matching prefix, then 20-th bit is set in @found0. This
 * can be used to enumerate all matching prefixes for the network @net using
 * function trie_match_next_longest_ip6() or macro TRIE_WALK_TO_ROOT_IP6().
 *
 * This function assumes IPv6 trie, there is also an IPv4 variant. The @net
 * argument is typed as net_addr_ip6, but would accept any IPv6-based net_addr,
 * like net6_prefix(). Anyway, returned @dst is always net_addr_ip6.
 *
 * Result: 1 if a matching prefix was found, 0 if not.
 */
int
trie_match_longest_ip6(const struct f_trie *t, const net_addr_ip6 *net, net_addr_ip6 *dst, ip6_addr *found0)
{
  ASSERT(!t->ipv4);

  const ip6_addr prefix = net->prefix;
  const int pxlen = net->pxlen;

  const struct f_trie_node6 *n = &t->root.v6;
  int len = 0;

  ip6_addr found = IP6_NONE;
  int last = -1;

  while (n)
  {
    /* We are out of path */
    if (!ip6_prefix_equal(prefix, n->addr, MIN(pxlen, n->plen)))
      goto done;

    /* Check accept mask */
    for (; len < n->plen; len++)
    {
      if (len > pxlen)
	goto done;

      if (ip6_getbit(n->accept, len - 1))
      {
	/* len is always < 128 due to len < n->plen */
	ip6_setbit(&found, len);
	last = len;
      }
    }

    /* Special case for max length, there is only one valid local position */
    if (len == IP6_MAX_PREFIX_LENGTH)
    {
      if (n->local & (1u << 1))
	last = len;

      goto done;
    }

    /* Check local mask */
    for (int pos = 1; pos < (1 << TRIE_STEP); pos = 2 * pos + ip6_getbit(prefix, len), len++)
    {
      if (len > pxlen)
	goto done;

      if (n->local & (1u << pos))
      {
	/* len is always < 128 due to special case above */
	ip6_setbit(&found, len);
	last = len;
      }
    }

    /* Choose child */
    n = n->c[ip6_getbits(prefix, n->plen, TRIE_STEP)];
  }

done:
  if (last < 0)
    return 0;

  *dst = NET_ADDR_IP6(ip6_and(prefix, ip6_mkmask(last)), last);

  if (found0)
    *found0 = found;

  return 1;
}

#define SAME_PREFIX(A,B,X,L) ((X) ? ip4_prefix_equal((A)->v4.addr, net4_prefix(B), (L)) : ip6_prefix_equal((A)->v6.addr, net6_prefix(B), (L)))
#define GET_NET_BITS(N,X,A,B) ((X) ? ip4_getbits(net4_prefix(N), (A), (B)) : ip6_getbits(net6_prefix(N), (A), (B)))

/**
 * trie_walk_init
 * @s: walk state
 * @t: trie
 * @net: optional subnet for walk
 *
 * Initialize walk state for subsequent walk through nodes of the trie @t by
 * trie_walk_next(). The argument @net allows to restrict walk to given subnet,
 * otherwise full walk over all nodes is used. This is done by finding node at
 * or below @net and starting position in it.
 */
void
trie_walk_init(struct f_trie_walk_state *s, const struct f_trie *t, const net_addr *net)
{
  *s = (struct f_trie_walk_state) {
    .ipv4 = t->ipv4,
    .accept_length = 0,
    .start_pos = 1,
    .local_pos = 1,
    .stack_pos = 0,
    .stack[0] = &t->root
  };

  if (!net)
    return;

  /* We want to find node of level at least plen */
  int plen = ROUND_DOWN_POW2(net->pxlen, TRIE_STEP);
  const struct f_trie_node *n = &t->root;
  const int v4 = t->ipv4;

  while (n)
  {
    int nlen = v4 ? n->v4.plen : n->v6.plen;

    /* We are out of path */
    if (!SAME_PREFIX(n, net, v4, MIN(net->pxlen, nlen)))
      break;

    /* We found final node */
    if (nlen >= plen)
    {
      if (nlen == plen)
      {
	/* Find proper local_pos, while accept_length is not used */
	int step = net->pxlen - plen;
	s->start_pos = s->local_pos = (1u << step) + GET_NET_BITS(net, v4, plen, step);
	s->accept_length = plen;
      }
      else
      {
	/* Start from pos 1 in local node, but first try accept mask */
	s->accept_length = net->pxlen;
      }

      s->stack[0] = n;
      return;
    }

    /* Choose child */
    n = GET_CHILD(n, v4, GET_NET_BITS(net, v4, nlen, TRIE_STEP));
  }

  s->stack[0] = NULL;
  return;
}

#define GET_ACCEPT_BIT(N,X,B) ((X) ? ip4_getbit((N)->v4.accept, (B)) : ip6_getbit((N)->v6.accept, (B)))
#define GET_LOCAL_BIT(N,X,B) (((X) ? (N)->v4.local : (N)->v6.local) & (1u << (B)))

/**
 * trie_walk_next
 * @s: walk state
 * @net: return value
 *
 * Find the next prefix in the trie walk and return it in the buffer @net.
 * Prefixes are walked in the usual lexicographic order and may be restricted
 * to a subset of the trie during walk setup by trie_walk_init(). Note that the
 * trie walk does not iterate reliably over 'implicit' prefixes defined by &low
 * and &high fields in prefix patterns, it is supposed to be used on tries
 * constructed from 'explicit' prefixes (&low == &plen == &high in call to
 * trie_add_prefix()).
 *
 * Result: 1 if the next prefix was found, 0 for the end of walk.
 */
int
trie_walk_next(struct f_trie_walk_state *s, net_addr *net)
{
  const struct f_trie_node *n = s->stack[s->stack_pos];
  int len = s->accept_length;
  int pos = s->local_pos;
  int v4 = s->ipv4;

  /*
   * The walk has three basic state variables -- n, len and pos. In each node n,
   * we first walk superprefixes (by len in &accept bitmask), and then we walk
   * internal positions (by pos in &local bitmask). These positions are:
   *
   *          1
   *      2       3
   *    4   5   6   7
   *   8 9 A B C D E F
   *
   * We walk them depth-first, including virtual positions 10-1F that are
   * equivalent of position 1 in child nodes 0-F.
   */

  if (!n)
  {
    memset(net, 0, v4 ? sizeof(net_addr_ip4) : sizeof(net_addr_ip6));
    return 0;
  }

next_node:;
  /* Current node prefix length */
  int nlen = v4 ? n->v4.plen : n->v6.plen;

  /* First, check for accept prefix */
  for (; len < nlen; len++)
    if (GET_ACCEPT_BIT(n, v4, len - 1))
    {
      if (v4)
	net_fill_ip4(net, ip4_and(n->v4.addr, ip4_mkmask(len)), len);
      else
	net_fill_ip6(net, ip6_and(n->v6.addr, ip6_mkmask(len)), len);

      s->local_pos = pos;
      s->accept_length = len + 1;
      return 1;
    }

next_pos:
  /* Bottom of this node */
  if (pos >= (1 << TRIE_STEP))
  {
    const struct f_trie_node *child = GET_CHILD(n, v4, pos - (1 << TRIE_STEP));
    int dir = 0;

    /* No child node */
    if (!child)
    {
      /* Step up until return from left child (pos is even) */
      do
      {
	/* Step up from start node */
	if ((s->stack_pos == 0) && (pos == s->start_pos))
	{
	  s->stack[0] = NULL;
	  memset(net, 0, v4 ? sizeof(net_addr_ip4) : sizeof(net_addr_ip6));
	  return 0;
	}

	/* Top of this node */
	if (pos == 1)
	{
	  ASSERT(s->stack_pos);
	  const struct f_trie_node *old = n;

	  /* Move to parent node */
	  s->stack_pos--;
	  n = s->stack[s->stack_pos];
	  nlen = v4 ? n->v4.plen : n->v6.plen;

	  pos = v4 ?
	    ip4_getbits(old->v4.addr, nlen, TRIE_STEP) :
	    ip6_getbits(old->v6.addr, nlen, TRIE_STEP);
	  pos += (1 << TRIE_STEP);
	  len = nlen;

	  ASSERT(GET_CHILD(n, v4, pos - (1 << TRIE_STEP)) == old);
	}

	/* Step up */
	dir = pos % 2;
	pos = pos / 2;
      }
      while (dir);

      /* Continue with step down to the right child */
      pos = 2 * pos + 1;
      goto next_pos;
    }

    /* Move to child node */
    pos = 1;
    len = nlen + TRIE_STEP;

    s->stack_pos++;
    n = s->stack[s->stack_pos] = child;
    goto next_node;
  }

  /* Check for local prefix */
  if (GET_LOCAL_BIT(n, v4, pos))
  {
    /* Convert pos to address of local network */
    int x = (pos >= 2) + (pos >= 4) + (pos >= 8);
    int y = pos & ((1u << x) - 1);

    if (v4)
      net_fill_ip4(net, !x ? n->v4.addr : ip4_setbits(n->v4.addr, nlen + x - 1, y), nlen + x);
    else
      net_fill_ip6(net, !x ? n->v6.addr : ip6_setbits(n->v6.addr, nlen + x - 1, y), nlen + x);

    s->local_pos = 2 * pos;
    s->accept_length = len;
    return 1;
  }

  /* Step down */
  pos = 2 * pos;
  goto next_pos;
}


static int
trie_node_same4(const struct f_trie_node4 *t1, const struct f_trie_node4 *t2)
{
  if ((t1 == NULL) && (t2 == NULL))
    return 1;

  if ((t1 == NULL) || (t2 == NULL))
    return 0;

  if ((t1->plen != t2->plen) ||
      (! ip4_equal(t1->addr, t2->addr)) ||
      (! ip4_equal(t1->accept, t2->accept)))
    return 0;

  for (uint i = 0; i < (1 << TRIE_STEP); i++)
    if (! trie_node_same4(t1->c[i], t2->c[i]))
      return 0;

  return 1;
}

static int
trie_node_same6(const struct f_trie_node6 *t1, const struct f_trie_node6 *t2)
{
  if ((t1 == NULL) && (t2 == NULL))
    return 1;

  if ((t1 == NULL) || (t2 == NULL))
    return 0;

  if ((t1->plen != t2->plen) ||
      (! ip6_equal(t1->addr, t2->addr)) ||
      (! ip6_equal(t1->accept, t2->accept)))
    return 0;

  for (uint i = 0; i < (1 << TRIE_STEP); i++)
    if (! trie_node_same6(t1->c[i], t2->c[i]))
      return 0;

  return 1;
}

/**
 * trie_same
 * @t1: first trie to be compared
 * @t2: second one
 *
 * Compares two tries and returns 1 if they are same
 */
int
trie_same(const struct f_trie *t1, const struct f_trie *t2)
{
  if ((t1->zero != t2->zero) || (t1->ipv4 != t2->ipv4))
    return 0;

  if (t1->ipv4)
    return trie_node_same4(&t1->root.v4, &t2->root.v4);
  else
    return trie_node_same6(&t1->root.v6, &t2->root.v6);
}


static const u8 log2[16] = {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3};

static void
trie_node_format(const struct f_trie_node *n, buffer *buf, int v4)
{
  if (n == NULL)
    return;

  if (v4)
  {
    if (ip4_nonzero(n->v4.accept))
      buffer_print(buf, "%I4/%d{%I4}, ", n->v4.addr, n->v4.plen, n->v4.accept);
  }
  else
  {
    if (ip6_nonzero(n->v6.accept))
      buffer_print(buf, "%I6/%d{%I6}, ", n->v6.addr, n->v6.plen, n->v6.accept);
  }

  int nlen = v4 ? n->v4.plen : n->v6.plen;
  uint local = v4 ? n->v4.local : n->v6.local;

  for (int i = (nlen ? 0 : 1); i < TRIE_STEP; i++)
    if (GET_ACCEPT_BIT(n, v4, nlen + i - 1))
      local &= ~trie_level_mask(1, i);

  for (int pos = 2; local && (pos < (1 << TRIE_STEP)); pos++)
    if (local & (1u << pos))
    {
      int lvl = log2[pos];
      int plen = nlen + lvl;

      int i;
      for (i = 0; lvl + i < TRIE_STEP; i++)
      {
	uint lmask = trie_level_mask(pos, i);

	if ((local & lmask) != lmask)
	  break;

	local &= ~lmask;
      }

      uint addr_bits = pos & ((1u << lvl) - 1);
      uint accept_bits = (1u << i) - 1;
      int h = plen + i - 1;

      if (v4)
      {
	ip4_addr addr = ip4_setbits(n->v4.addr, plen - 1, addr_bits);
	ip4_addr mask = ip4_setbits(IP4_NONE, h - 1, accept_bits);
	buffer_print(buf, "%I4/%d{%I4}, ", addr, plen, mask);
      }
      else
      {
	ip6_addr addr = ip6_setbits(n->v6.addr, plen - 1, addr_bits);
	ip6_addr mask = ip6_setbits(IP6_NONE, h - 1, accept_bits);
	buffer_print(buf, "%I6/%d{%I6}, ", addr, plen, mask);
      }
    }

  for (int i = 0; i < (1 << TRIE_STEP); i++)
    trie_node_format(GET_CHILD(n, v4, i), buf, v4);
}

/**
 * trie_format
 * @t: trie to be formatted
 * @buf: destination buffer
 *
 * Prints the trie to the supplied buffer.
 */
void
trie_format(const struct f_trie *t, buffer *buf)
{
  buffer_puts(buf, "[");

  if (t->zero)
    buffer_print(buf, "%I/%d, ", t->ipv4 ? IPA_NONE4 : IPA_NONE6, 0);

  trie_node_format(&t->root, buf, t->ipv4);

  if (buf->pos == buf->end)
    return;

  /* Undo last separator */
  if (buf->pos[-1] != '[')
    buf->pos -= 2;

  buffer_puts(buf, "]");
}