/* * BIRD Internet Routing Daemon -- Unix I/O * * (c) 1998--2004 Martin Mares <mj@ucw.cz> * (c) 2004 Ondrej Filip <feela@network.cz> * * Can be freely distributed and used under the terms of the GNU GPL. */ #include <stdio.h> #include <stdlib.h> #include <time.h> #include <sys/time.h> #include <sys/types.h> #include <sys/socket.h> #include <sys/fcntl.h> #include <sys/un.h> #include <unistd.h> #include <errno.h> #include "nest/bird.h" #include "lib/lists.h" #include "lib/resource.h" #include "lib/timer.h" #include "lib/socket.h" #include "lib/event.h" #include "lib/string.h" #include "nest/iface.h" #include "lib/unix.h" #include "lib/sysio.h" /* * Tracked Files */ struct rfile { resource r; FILE *f; }; static void rf_free(resource *r) { struct rfile *a = (struct rfile *) r; fclose(a->f); } static void rf_dump(resource *r) { struct rfile *a = (struct rfile *) r; debug("(FILE *%p)\n", a->f); } static struct resclass rf_class = { "FILE", sizeof(struct rfile), rf_free, rf_dump }; void * tracked_fopen(pool *p, char *name, char *mode) { FILE *f = fopen(name, mode); if (f) { struct rfile *r = ralloc(p, &rf_class); r->f = f; } return f; } /** * DOC: Timers * * Timers are resources which represent a wish of a module to call * a function at the specified time. The platform dependent code * doesn't guarantee exact timing, only that a timer function * won't be called before the requested time. * * In BIRD, real time is represented by values of the &bird_clock_t type * which are integral numbers interpreted as a number of seconds since * a fixed (but platform dependent) epoch. The current time can be read * from a variable @now with reasonable accuracy. * * Each timer is described by a &timer structure containing a pointer * to the handler function (@hook), data private to this function (@data), * time the function should be called at (@expires, 0 for inactive timers), * for the other fields see |timer.h|. */ #define NEAR_TIMER_LIMIT 4 static list near_timers, far_timers; static bird_clock_t first_far_timer = TIME_INFINITY; bird_clock_t now; static void tm_free(resource *r) { timer *t = (timer *) r; tm_stop(t); } static void tm_dump(resource *r) { timer *t = (timer *) r; debug("(code %p, data %p, ", t->hook, t->data); if (t->randomize) debug("rand %d, ", t->randomize); if (t->recurrent) debug("recur %d, ", t->recurrent); if (t->expires) debug("expires in %d sec)\n", t->expires - now); else debug("inactive)\n"); } static struct resclass tm_class = { "Timer", sizeof(timer), tm_free, tm_dump }; /** * tm_new - create a timer * @p: pool * * This function creates a new timer resource and returns * a pointer to it. To use the timer, you need to fill in * the structure fields and call tm_start() to start timing. */ timer * tm_new(pool *p) { timer *t = ralloc(p, &tm_class); t->hook = NULL; t->data = NULL; t->randomize = 0; t->expires = 0; return t; } static inline void tm_insert_near(timer *t) { node *n = HEAD(near_timers); while (n->next && (SKIP_BACK(timer, n, n)->expires < t->expires)) n = n->next; insert_node(&t->n, n->prev); } /** * tm_start - start a timer * @t: timer * @after: number of seconds the timer should be run after * * This function schedules the hook function of the timer to * be called after @after seconds. If the timer has been already * started, it's @expire time is replaced by the new value. * * You can have set the @randomize field of @t, the timeout * will be increased by a random number of seconds chosen * uniformly from range 0 .. @randomize. * * You can call tm_start() from the handler function of the timer * to request another run of the timer. Also, you can set the @recurrent * field to have the timer re-added automatically with the same timeout. */ void tm_start(timer *t, unsigned after) { bird_clock_t when; if (t->randomize) after += random() % (t->randomize + 1); when = now + after; if (t->expires == when) return; if (t->expires) rem_node(&t->n); t->expires = when; if (after <= NEAR_TIMER_LIMIT) tm_insert_near(t); else { if (!first_far_timer || first_far_timer > when) first_far_timer = when; add_tail(&far_timers, &t->n); } } /** * tm_stop - stop a timer * @t: timer * * This function stops a timer. If the timer is already stopped, * nothing happens. */ void tm_stop(timer *t) { if (t->expires) { rem_node(&t->n); t->expires = 0; } } static void tm_dump_them(char *name, list *l) { node *n; timer *t; debug("%s timers:\n", name); WALK_LIST(n, *l) { t = SKIP_BACK(timer, n, n); debug("%p ", t); tm_dump(&t->r); } debug("\n"); } void tm_dump_all(void) { tm_dump_them("Near", &near_timers); tm_dump_them("Far", &far_timers); } static inline time_t tm_first_shot(void) { time_t x = first_far_timer; if (!EMPTY_LIST(near_timers)) { timer *t = SKIP_BACK(timer, n, HEAD(near_timers)); if (t->expires < x) x = t->expires; } return x; } static void tm_shot(void) { timer *t; node *n, *m; if (first_far_timer <= now) { bird_clock_t limit = now + NEAR_TIMER_LIMIT; first_far_timer = TIME_INFINITY; n = HEAD(far_timers); while (m = n->next) { t = SKIP_BACK(timer, n, n); if (t->expires <= limit) { rem_node(n); tm_insert_near(t); } else if (t->expires < first_far_timer) first_far_timer = t->expires; n = m; } } while ((n = HEAD(near_timers)) -> next) { int delay; t = SKIP_BACK(timer, n, n); if (t->expires > now) break; rem_node(n); delay = t->expires - now; t->expires = 0; if (t->recurrent) { int i = t->recurrent - delay; if (i < 0) i = 0; tm_start(t, i); } t->hook(t); } } /** * tm_parse_datetime - parse a date and time * @x: datetime string * * tm_parse_datetime() takes a textual representation of * a date and time (dd-mm-yyyy hh:mm:ss) * and converts it to the corresponding value of type &bird_clock_t. */ bird_clock_t tm_parse_datetime(char *x) { struct tm tm; int n; time_t t; if (sscanf(x, "%d-%d-%d %d:%d:%d%n", &tm.tm_mday, &tm.tm_mon, &tm.tm_year, &tm.tm_hour, &tm.tm_min, &tm.tm_sec, &n) != 6 || x[n]) return tm_parse_date(x); tm.tm_mon--; tm.tm_year -= 1900; t = mktime(&tm); if (t == (time_t) -1) return 0; return t; } /** * tm_parse_date - parse a date * @x: date string * * tm_parse_date() takes a textual representation of a date (dd-mm-yyyy) * and converts it to the corresponding value of type &bird_clock_t. */ bird_clock_t tm_parse_date(char *x) { struct tm tm; int n; time_t t; if (sscanf(x, "%d-%d-%d%n", &tm.tm_mday, &tm.tm_mon, &tm.tm_year, &n) != 3 || x[n]) return 0; tm.tm_mon--; tm.tm_year -= 1900; tm.tm_hour = tm.tm_min = tm.tm_sec = 0; t = mktime(&tm); if (t == (time_t) -1) return 0; return t; } /** * tm_format_date - convert date to textual representation * @x: destination buffer of size %TM_DATE_BUFFER_SIZE * @t: time * * This function formats the given time value @t to a textual * date representation (dd-mm-yyyy). */ void tm_format_date(char *x, bird_clock_t t) { struct tm *tm; tm = localtime(&t); bsprintf(x, "%02d-%02d-%04d", tm->tm_mday, tm->tm_mon+1, tm->tm_year+1900); } /** * tm_format_datetime - convert date and time to textual representation * @x: destination buffer of size %TM_DATETIME_BUFFER_SIZE * @t: time * * This function formats the given time value @t to a textual * date/time representation (dd-mm-yyyy hh:mm:ss). */ void tm_format_datetime(char *x, bird_clock_t t) { struct tm *tm; tm = localtime(&t); if (strftime(x, TM_DATETIME_BUFFER_SIZE, "%d-%m-%Y %H:%M:%S", tm) == TM_DATETIME_BUFFER_SIZE) strcpy(x, "<too-long>"); } /** * tm_format_reltime - convert date and time to relative textual representation * @x: destination buffer of size %TM_RELTIME_BUFFER_SIZE * @t: time * * This function formats the given time value @t to a short * textual representation relative to the current time. */ void tm_format_reltime(char *x, bird_clock_t t) { struct tm *tm; bird_clock_t delta = (t < now) ? (now - t) : (t - now); static char *month_names[12] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; tm = localtime(&t); if (delta < 20*3600) bsprintf(x, "%02d:%02d", tm->tm_hour, tm->tm_min); else if (delta < 360*86400) bsprintf(x, "%s%02d", month_names[tm->tm_mon], tm->tm_mday); else bsprintf(x, "%d", tm->tm_year+1900); } /** * DOC: Sockets * * Socket resources represent network connections. Their data structure (&socket) * contains a lot of fields defining the exact type of the socket, the local and * remote addresses and ports, pointers to socket buffers and finally pointers to * hook functions to be called when new data have arrived to the receive buffer * (@rx_hook), when the contents of the transmit buffer have been transmitted * (@tx_hook) and when an error or connection close occurs (@err_hook). * * Freeing of sockets from inside socket hooks is perfectly safe. */ #ifndef SOL_IP #define SOL_IP IPPROTO_IP #endif #ifndef SOL_IPV6 #define SOL_IPV6 IPPROTO_IPV6 #endif #ifndef IPV6_ADD_MEMBERSHIP #define IPV6_ADD_MEMBERSHIP IP_ADD_MEMBERSHIP #endif static list sock_list; static struct birdsock *current_sock; static int sock_recalc_fdsets_p; static inline sock * sk_next(sock *s) { if (!s->n.next->next) return NULL; else return SKIP_BACK(sock, n, s->n.next); } static void sk_alloc_bufs(sock *s) { if (!s->rbuf && s->rbsize) s->rbuf = s->rbuf_alloc = xmalloc(s->rbsize); s->rpos = s->rbuf; if (!s->tbuf && s->tbsize) s->tbuf = s->tbuf_alloc = xmalloc(s->tbsize); s->tpos = s->ttx = s->tbuf; } static void sk_free_bufs(sock *s) { if (s->rbuf_alloc) { xfree(s->rbuf_alloc); s->rbuf = s->rbuf_alloc = NULL; } if (s->tbuf_alloc) { xfree(s->tbuf_alloc); s->tbuf = s->tbuf_alloc = NULL; } } static void sk_free(resource *r) { sock *s = (sock *) r; sk_free_bufs(s); if (s->fd >= 0) { close(s->fd); if (s == current_sock) current_sock = sk_next(s); rem_node(&s->n); sock_recalc_fdsets_p = 1; } } void sk_reallocate(sock *s) { sk_free_bufs(s); sk_alloc_bufs(s); } static void sk_dump(resource *r) { sock *s = (sock *) r; static char *sk_type_names[] = { "TCP<", "TCP>", "TCP", "UDP", "UDP/MC", "IP", "IP/MC", "MAGIC", "UNIX<", "UNIX", "DEL!" }; debug("(%s, ud=%p, sa=%08x, sp=%d, da=%08x, dp=%d, tos=%d, ttl=%d, if=%s)\n", sk_type_names[s->type], s->data, s->saddr, s->sport, s->daddr, s->dport, s->tos, s->ttl, s->iface ? s->iface->name : "none"); } static struct resclass sk_class = { "Socket", sizeof(sock), sk_free, sk_dump }; /** * sk_new - create a socket * @p: pool * * This function creates a new socket resource. If you want to use it, * you need to fill in all the required fields of the structure and * call sk_open() to do the actual opening of the socket. */ sock * sk_new(pool *p) { sock *s = ralloc(p, &sk_class); s->pool = p; s->data = NULL; s->saddr = s->daddr = IPA_NONE; s->sport = s->dport = 0; s->tos = s->ttl = -1; s->iface = NULL; s->rbuf = NULL; s->rx_hook = NULL; s->rbsize = 0; s->tbuf = NULL; s->tx_hook = NULL; s->tbsize = 0; s->err_hook = NULL; s->fd = -1; s->rbuf_alloc = s->tbuf_alloc = NULL; return s; } static void sk_insert(sock *s) { add_tail(&sock_list, &s->n); sock_recalc_fdsets_p = 1; } #ifdef IPV6 void fill_in_sockaddr(sockaddr *sa, ip_addr a, unsigned port) { memset (sa, 0, sizeof (struct sockaddr_in6)); sa->sin6_family = AF_INET6; sa->sin6_port = htons(port); sa->sin6_flowinfo = 0; #ifdef HAVE_SIN_LEN sa->sin6_len = sizeof(struct sockaddr_in6); #endif set_inaddr(&sa->sin6_addr, a); } void get_sockaddr(struct sockaddr_in6 *sa, ip_addr *a, unsigned *port, int check) { if (check && sa->sin6_family != AF_INET6) bug("get_sockaddr called for wrong address family (%d)", sa->sin6_family); if (port) *port = ntohs(sa->sin6_port); memcpy(a, &sa->sin6_addr, sizeof(*a)); ipa_ntoh(*a); } #else void fill_in_sockaddr(sockaddr *sa, ip_addr a, unsigned port) { memset (sa, 0, sizeof (struct sockaddr_in)); sa->sin_family = AF_INET; sa->sin_port = htons(port); #ifdef HAVE_SIN_LEN sa->sin_len = sizeof(struct sockaddr_in); #endif set_inaddr(&sa->sin_addr, a); } void get_sockaddr(struct sockaddr_in *sa, ip_addr *a, unsigned *port, int check) { if (check && sa->sin_family != AF_INET) bug("get_sockaddr called for wrong address family (%d)", sa->sin_family); if (port) *port = ntohs(sa->sin_port); memcpy(a, &sa->sin_addr.s_addr, sizeof(*a)); ipa_ntoh(*a); } #endif #define ERR(x) do { err = x; goto bad; } while(0) #define WARN(x) log(L_WARN "sk_setup: %s: %m", x) static char * sk_setup(sock *s) { int fd = s->fd; int one = 1; char *err; if (fcntl(fd, F_SETFL, O_NONBLOCK) < 0) ERR("fcntl(O_NONBLOCK)"); if (s->type == SK_UNIX) return NULL; #ifdef IPV6 if (s->ttl >= 0 && s->type != SK_UDP_MC && s->type != SK_IP_MC && setsockopt(fd, SOL_IPV6, IPV6_UNICAST_HOPS, &s->ttl, sizeof(s->ttl)) < 0) ERR("IPV6_UNICAST_HOPS"); #else if ((s->tos >= 0) && setsockopt(fd, SOL_IP, IP_TOS, &s->tos, sizeof(s->tos)) < 0) WARN("IP_TOS"); if (s->ttl >= 0 && setsockopt(fd, SOL_IP, IP_TTL, &s->ttl, sizeof(s->ttl)) < 0) ERR("IP_TTL"); #ifdef CONFIG_UNIX_DONTROUTE if (s->ttl == 1 && setsockopt(fd, SOL_SOCKET, SO_DONTROUTE, &one, sizeof(one)) < 0) ERR("SO_DONTROUTE"); #endif #endif err = NULL; bad: return err; } static void sk_tcp_connected(sock *s) { s->type = SK_TCP; sk_alloc_bufs(s); s->tx_hook(s); } static int sk_passive_connected(sock *s, struct sockaddr *sa, int al, int type) { int fd = accept(s->fd, sa, &al); if (fd >= 0) { sock *t = sk_new(s->pool); char *err; t->type = type; t->fd = fd; t->ttl = s->ttl; t->tos = s->tos; t->rbsize = s->rbsize; t->tbsize = s->tbsize; if (type == SK_TCP) get_sockaddr((sockaddr *) sa, &t->daddr, &t->dport, 1); sk_insert(t); if (err = sk_setup(t)) { log(L_ERR "Incoming connection: %s: %m", err); rfree(t); return 1; } sk_alloc_bufs(t); s->rx_hook(t, 0); return 1; } else if (errno != EINTR && errno != EAGAIN) { log(L_ERR "accept: %m"); s->err_hook(s, errno); } return 0; } /** * sk_open - open a socket * @s: socket * * This function takes a socket resource created by sk_new() and * initialized by the user and binds a corresponding network connection * to it. * * Result: 0 for success, -1 for an error. */ int sk_open(sock *s) { int fd; sockaddr sa; int one = 1; int type = s->type; int has_src = ipa_nonzero(s->saddr) || s->sport; char *err; switch (type) { case SK_TCP_ACTIVE: s->ttx = ""; /* Force s->ttx != s->tpos */ /* Fall thru */ case SK_TCP_PASSIVE: fd = socket(BIRD_PF, SOCK_STREAM, IPPROTO_TCP); break; case SK_UDP: case SK_UDP_MC: fd = socket(BIRD_PF, SOCK_DGRAM, IPPROTO_UDP); break; case SK_IP: case SK_IP_MC: fd = socket(BIRD_PF, SOCK_RAW, s->dport); break; case SK_MAGIC: fd = s->fd; break; default: bug("sk_open() called for invalid sock type %d", type); } if (fd < 0) die("sk_open: socket: %m"); s->fd = fd; if (err = sk_setup(s)) goto bad; switch (type) { case SK_UDP: case SK_IP: if (s->iface) /* It's a broadcast socket */ #ifdef IPV6 bug("IPv6 has no broadcasts"); #else if (setsockopt(fd, SOL_SOCKET, SO_BROADCAST, &one, sizeof(one)) < 0) ERR("SO_BROADCAST"); #endif break; case SK_UDP_MC: case SK_IP_MC: { #ifdef IPV6 /* Fortunately, IPv6 socket interface is recent enough and therefore standardized */ ASSERT(s->iface && s->iface->addr); if (ipa_nonzero(s->daddr)) { int t = s->iface->index; int zero = 0; if (setsockopt(fd, SOL_IPV6, IPV6_MULTICAST_HOPS, &s->ttl, sizeof(s->ttl)) < 0) ERR("IPV6_MULTICAST_HOPS"); if (setsockopt(fd, SOL_IPV6, IPV6_MULTICAST_LOOP, &zero, sizeof(zero)) < 0) ERR("IPV6_MULTICAST_LOOP"); if (setsockopt(fd, SOL_IPV6, IPV6_MULTICAST_IF, &t, sizeof(t)) < 0) ERR("IPV6_MULTICAST_IF"); } if (has_src) { struct ipv6_mreq mreq; set_inaddr(&mreq.ipv6mr_multiaddr, s->daddr); #ifdef CONFIG_IPV6_GLIBC_20 mreq.ipv6mr_ifindex = s->iface->index; #else mreq.ipv6mr_interface = s->iface->index; #endif /* CONFIG_IPV6_GLIBC_20 */ if (setsockopt(fd, SOL_IPV6, IPV6_ADD_MEMBERSHIP, &mreq, sizeof(mreq)) < 0) ERR("IPV6_ADD_MEMBERSHIP"); } #else /* With IPv4 there are zillions of different socket interface variants. Ugh. */ ASSERT(s->iface && s->iface->addr); if (err = sysio_mcast_join(s)) goto bad; #endif /* IPV6 */ break; } } if (has_src) { int port; if (type == SK_IP || type == SK_IP_MC) port = 0; else { port = s->sport; if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) < 0) ERR("SO_REUSEADDR"); } fill_in_sockaddr(&sa, s->saddr, port); #ifdef CONFIG_SKIP_MC_BIND if (type == SK_IP && bind(fd, (struct sockaddr *) &sa, sizeof(sa)) < 0) #else if (bind(fd, (struct sockaddr *) &sa, sizeof(sa)) < 0) #endif ERR("bind"); } fill_in_sockaddr(&sa, s->daddr, s->dport); switch (type) { case SK_TCP_ACTIVE: if (connect(fd, (struct sockaddr *) &sa, sizeof(sa)) >= 0) sk_tcp_connected(s); else if (errno != EINTR && errno != EAGAIN && errno != EINPROGRESS && errno != ECONNREFUSED && errno != EHOSTUNREACH) ERR("connect"); break; case SK_TCP_PASSIVE: if (listen(fd, 8)) ERR("listen"); break; case SK_MAGIC: break; default: sk_alloc_bufs(s); #ifdef IPV6 #ifdef IPV6_MTU_DISCOVER { int dont = IPV6_PMTUDISC_DONT; if (setsockopt(fd, SOL_IPV6, IPV6_MTU_DISCOVER, &dont, sizeof(dont)) < 0) ERR("IPV6_MTU_DISCOVER"); } #endif #else #ifdef IP_PMTUDISC { int dont = IP_PMTUDISC_DONT; if (setsockopt(fd, SOL_IP, IP_PMTUDISC, &dont, sizeof(dont)) < 0) ERR("IP_PMTUDISC"); } #endif #endif } sk_insert(s); return 0; bad: log(L_ERR "sk_open: %s: %m", err); close(fd); s->fd = -1; return -1; } int sk_open_unix(sock *s, char *name) { int fd; struct sockaddr_un sa; char *err; fd = socket(AF_UNIX, SOCK_STREAM, 0); if (fd < 0) die("sk_open_unix: socket: %m"); s->fd = fd; if (err = sk_setup(s)) goto bad; unlink(name); sa.sun_family = AF_UNIX; strcpy(sa.sun_path, name); if (bind(fd, (struct sockaddr *) &sa, SUN_LEN(&sa)) < 0) ERR("bind"); if (listen(fd, 8)) ERR("listen"); sk_insert(s); return 0; bad: log(L_ERR "sk_open_unix: %s: %m", err); close(fd); s->fd = -1; return -1; } static int sk_maybe_write(sock *s) { int e; switch (s->type) { case SK_TCP: case SK_MAGIC: case SK_UNIX: while (s->ttx != s->tpos) { e = write(s->fd, s->ttx, s->tpos - s->ttx); if (e < 0) { if (errno != EINTR && errno != EAGAIN) { s->err_hook(s, errno); return -1; } return 0; } s->ttx += e; } s->ttx = s->tpos = s->tbuf; return 1; case SK_UDP: case SK_UDP_MC: case SK_IP: case SK_IP_MC: { sockaddr sa; if (s->tbuf == s->tpos) return 1; fill_in_sockaddr(&sa, s->faddr, s->fport); e = sendto(s->fd, s->tbuf, s->tpos - s->tbuf, 0, (struct sockaddr *) &sa, sizeof(sa)); if (e < 0) { if (errno != EINTR && errno != EAGAIN) { s->err_hook(s, errno); return -1; } return 0; } s->tpos = s->tbuf; return 1; } default: bug("sk_maybe_write: unknown socket type %d", s->type); } } /** * sk_send - send data to a socket * @s: socket * @len: number of bytes to send * * This function sends @len bytes of data prepared in the * transmit buffer of the socket @s to the network connection. * If the packet can be sent immediately, it does so and returns * 1, else it queues the packet for later processing, returns 0 * and calls the @tx_hook of the socket when the tranmission * takes place. */ int sk_send(sock *s, unsigned len) { s->faddr = s->daddr; s->fport = s->dport; s->ttx = s->tbuf; s->tpos = s->tbuf + len; return sk_maybe_write(s); } /** * sk_send_to - send data to a specific destination * @s: socket * @len: number of bytes to send * @addr: IP address to send the packet to * @port: port to send the packet to * * This is a sk_send() replacement for connection-less packet sockets * which allows destination of the packet to be chosen dynamically. */ int sk_send_to(sock *s, unsigned len, ip_addr addr, unsigned port) { s->faddr = addr; s->fport = port; s->ttx = s->tbuf; s->tpos = s->tbuf + len; return sk_maybe_write(s); } static int sk_read(sock *s) { switch (s->type) { case SK_TCP_PASSIVE: { sockaddr sa; return sk_passive_connected(s, (struct sockaddr *) &sa, sizeof(sa), SK_TCP); } case SK_UNIX_PASSIVE: { struct sockaddr_un sa; return sk_passive_connected(s, (struct sockaddr *) &sa, sizeof(sa), SK_UNIX); } case SK_TCP: case SK_UNIX: { int c = read(s->fd, s->rpos, s->rbuf + s->rbsize - s->rpos); if (c < 0) { if (errno != EINTR && errno != EAGAIN) s->err_hook(s, errno); } else if (!c) s->err_hook(s, 0); else { s->rpos += c; if (s->rx_hook(s, s->rpos - s->rbuf)) { /* We need to be careful since the socket could have been deleted by the hook */ if (current_sock == s) s->rpos = s->rbuf; } return 1; } return 0; } case SK_MAGIC: return s->rx_hook(s, 0); default: { sockaddr sa; int al = sizeof(sa); int e = recvfrom(s->fd, s->rbuf, s->rbsize, 0, (struct sockaddr *) &sa, &al); if (e < 0) { if (errno != EINTR && errno != EAGAIN) s->err_hook(s, errno); return 0; } s->rpos = s->rbuf + e; get_sockaddr(&sa, &s->faddr, &s->fport, 1); s->rx_hook(s, e); return 1; } } } static int sk_write(sock *s) { switch (s->type) { case SK_TCP_ACTIVE: { sockaddr sa; fill_in_sockaddr(&sa, s->daddr, s->dport); if (connect(s->fd, (struct sockaddr *) &sa, sizeof(sa)) >= 0 || errno == EISCONN) sk_tcp_connected(s); else if (errno != EINTR && errno != EAGAIN && errno != EINPROGRESS) s->err_hook(s, errno); return 0; } default: if (s->ttx != s->tpos && sk_maybe_write(s) > 0) { s->tx_hook(s); return 1; } return 0; } } void sk_dump_all(void) { node *n; sock *s; debug("Open sockets:\n"); WALK_LIST(n, sock_list) { s = SKIP_BACK(sock, n, n); debug("%p ", s); sk_dump(&s->r); } debug("\n"); } #undef ERR #undef WARN /* * Main I/O Loop */ volatile int async_config_flag; /* Asynchronous reconfiguration/dump scheduled */ volatile int async_dump_flag; void io_init(void) { init_list(&near_timers); init_list(&far_timers); init_list(&sock_list); init_list(&global_event_list); krt_io_init(); now = time(NULL); srandom((int) now); } void io_loop(void) { fd_set rd, wr; struct timeval timo; time_t tout; int hi, events; sock *s; node *n; sock_recalc_fdsets_p = 1; for(;;) { events = ev_run_list(&global_event_list); now = time(NULL); tout = tm_first_shot(); if (tout <= now) { tm_shot(); continue; } timo.tv_sec = events ? 0 : tout - now; timo.tv_usec = 0; if (sock_recalc_fdsets_p) { sock_recalc_fdsets_p = 0; FD_ZERO(&rd); FD_ZERO(&wr); } hi = 0; WALK_LIST(n, sock_list) { s = SKIP_BACK(sock, n, n); if (s->rx_hook) { FD_SET(s->fd, &rd); if (s->fd > hi) hi = s->fd; } else FD_CLR(s->fd, &rd); if (s->tx_hook && s->ttx != s->tpos) { FD_SET(s->fd, &wr); if (s->fd > hi) hi = s->fd; } else FD_CLR(s->fd, &wr); } /* * Yes, this is racy. But even if the signal comes before this test * and entering select(), it gets caught on the next timer tick. */ if (async_config_flag) { async_config(); async_config_flag = 0; continue; } if (async_dump_flag) { async_dump(); async_dump_flag = 0; continue; } if (async_shutdown_flag) { async_shutdown(); async_shutdown_flag = 0; continue; } /* And finally enter select() to find active sockets */ hi = select(hi+1, &rd, &wr, NULL, &timo); if (hi < 0) { if (errno == EINTR || errno == EAGAIN) continue; die("select: %m"); } if (hi) { current_sock = SKIP_BACK(sock, n, HEAD(sock_list)); /* guaranteed to be non-empty */ while (current_sock) { sock *s = current_sock; int e; if (FD_ISSET(s->fd, &rd)) do { e = sk_read(s); if (s != current_sock) goto next; } while (e); if (FD_ISSET(s->fd, &wr)) do { e = sk_write(s); if (s != current_sock) goto next; } while (e); current_sock = sk_next(s); next: ; } } } } void test_old_bird(char *path) { int fd; struct sockaddr_un sa; fd = socket(AF_UNIX, SOCK_STREAM, 0); if (fd < 0) die("Cannot create socket: %m"); bzero(&sa, sizeof(sa)); sa.sun_family = AF_UNIX; strcpy(sa.sun_path, path); if (connect(fd, (struct sockaddr *) &sa, SUN_LEN(&sa)) == 0) die("I found another BIRD running."); close(fd); }