/* * BIRD -- OSPF * * (c) 1999--2004 Ondrej Filip <feela@network.cz> * (c) 2009--2014 Ondrej Zajicek <santiago@crfreenet.org> * (c) 2009--2014 CZ.NIC z.s.p.o. * * Can be freely distributed and used under the terms of the GNU GPL. */ /** * DOC: Open Shortest Path First (OSPF) * * The OSPF protocol is quite complicated and its complex implemenation is split * to many files. In |ospf.c|, you will find mainly the interface for * communication with the core (e.g., reconfiguration hooks, shutdown and * initialisation and so on). File |iface.c| contains the interface state * machine and functions for allocation and deallocation of OSPF's interface * data structures. Source |neighbor.c| includes the neighbor state machine and * functions for election of Designated Router and Backup Designated router. In * |packet.c|, you will find various functions for sending and receiving generic * OSPF packets. There are also routines for authentication and checksumming. * In |hello.c|, there are routines for sending and receiving of hello packets * as well as functions for maintaining wait times and the inactivity timer. * Files |lsreq.c|, |lsack.c|, |dbdes.c| contain functions for sending and * receiving of link-state requests, link-state acknowledgements and database * descriptions respectively. In |lsupd.c|, there are functions for sending and * receiving of link-state updates and also the flooding algorithm. Source * |topology.c| is a place where routines for searching LSAs in the link-state * database, adding and deleting them reside, there also are functions for * originating of various types of LSAs (router LSA, net LSA, external LSA). * File |rt.c| contains routines for calculating the routing table. |lsalib.c| * is a set of various functions for working with the LSAs (endianity * conversions, calculation of checksum etc.). * * One instance of the protocol is able to hold LSA databases for multiple OSPF * areas, to exchange routing information between multiple neighbors and to * calculate the routing tables. The core structure is &ospf_proto to which * multiple &ospf_area and &ospf_iface structures are connected. &ospf_proto is * also connected to &top_hash_graph which is a dynamic hashing structure that * describes the link-state database. It allows fast search, addition and * deletion. Each LSA is kept in two pieces: header and body. Both of them are * kept in the endianity of the CPU. * * In OSPFv2 specification, it is implied that there is one IP prefix for each * physical network/interface (unless it is an ptp link). But in modern systems, * there might be more independent IP prefixes associated with an interface. To * handle this situation, we have one &ospf_iface for each active IP prefix * (instead for each active iface); This behaves like virtual interface for the * purpose of OSPF. If we receive packet, we associate it with a proper virtual * interface mainly according to its source address. * * OSPF keeps one socket per &ospf_iface. This allows us (compared to one socket * approach) to evade problems with a limit of multicast groups per socket and * with sending multicast packets to appropriate interface in a portable way. * The socket is associated with underlying physical iface and should not * receive packets received on other ifaces (unfortunately, this is not true on * BSD). Generally, one packet can be received by more sockets (for example, if * there are more &ospf_iface on one physical iface), therefore we explicitly * filter received packets according to src/dst IP address and received iface. * * Vlinks are implemented using particularly degenerate form of &ospf_iface, * which has several exceptions: it does not have its iface or socket (it copies * these from 'parent' &ospf_iface) and it is present in iface list even when * down (it is not freed in ospf_iface_down()). * * The heart beat of ospf is ospf_disp(). It is called at regular intervals * (&ospf_proto->tick). It is responsible for aging and flushing of LSAs in the * database, updating topology information in LSAs and for routing table * calculation. * * To every &ospf_iface, we connect one or more &ospf_neighbor's -- a structure * containing many timers and queues for building adjacency and for exchange of * routing messages. * * BIRD's OSPF implementation respects RFC2328 in every detail, but some of * internal algorithms do differ. The RFC recommends making a snapshot of the * link-state database when a new adjacency is forming and sending the database * description packets based on the information in this snapshot. The database * can be quite large in some networks, so rather we walk through a &slist * structure which allows us to continue even if the actual LSA we were working * with is deleted. New LSAs are added at the tail of this &slist. * * We also do not keep a separate OSPF routing table, because the core helps us * by being able to recognize when a route is updated to an identical one and it * suppresses the update automatically. Due to this, we can flush all the routes * we have recalculated and also those we have deleted to the core's routing * table and the core will take care of the rest. This simplifies the process * and conserves memory. * * Supported standards: * - RFC 2328 - main OSPFv2 standard * - RFC 5340 - main OSPFv3 standard * - RFC 3101 - OSPFv2 NSSA areas * - RFC 4576 - OSPFv2 VPN loop prevention * - RFC 5250 - OSPFv2 Opaque LSAs * - RFC 5709 - OSPFv2 HMAC-SHA Cryptographic Authentication * - RFC 5838 - OSPFv3 Support of Address Families * - RFC 6549 - OSPFv2 Multi-Instance Extensions * - RFC 6987 - OSPF Stub Router Advertisement * - RFC 7166 - OSPFv3 Authentication Trailer * - RFC 7770 - OSPF Router Information LSA */ #include <stdlib.h> #include "ospf.h" static int ospf_preexport(struct proto *P, rte **new, struct linpool *pool); static void ospf_make_tmp_attrs(struct rte *rt, struct linpool *pool); static void ospf_store_tmp_attrs(struct rte *rt, struct linpool *pool); static void ospf_reload_routes(struct channel *C); static int ospf_rte_better(struct rte *new, struct rte *old); static int ospf_rte_same(struct rte *new, struct rte *old); static void ospf_disp(timer *timer); static void add_area_nets(struct ospf_area *oa, struct ospf_area_config *ac) { struct ospf_proto *p = oa->po; struct area_net_config *anc; struct area_net *an; fib_init(&oa->net_fib, p->p.pool, ospf_get_af(p), sizeof(struct area_net), OFFSETOF(struct area_net, fn), 0, NULL); fib_init(&oa->enet_fib, p->p.pool, ospf_get_af(p), sizeof(struct area_net), OFFSETOF(struct area_net, fn), 0, NULL); WALK_LIST(anc, ac->net_list) { an = fib_get(&oa->net_fib, &anc->prefix); an->hidden = anc->hidden; } WALK_LIST(anc, ac->enet_list) { an = fib_get(&oa->enet_fib, &anc->prefix); an->hidden = anc->hidden; an->tag = anc->tag; } } static inline uint ospf_opts(struct ospf_proto *p) { if (ospf_is_v2(p)) return 0; return ((ospf_is_ip6(p) && !p->af_mc) ? OPT_V6 : 0) | (!p->stub_router ? OPT_R : 0) | (p->af_ext ? OPT_AF : 0); } static void ospf_area_add(struct ospf_proto *p, struct ospf_area_config *ac) { struct ospf_area *oa; OSPF_TRACE(D_EVENTS, "Adding area %R", ac->areaid); oa = mb_allocz(p->p.pool, sizeof(struct ospf_area)); add_tail(&p->area_list, NODE oa); p->areano++; oa->ac = ac; oa->areaid = ac->areaid; oa->rt = NULL; oa->po = p; fib_init(&oa->rtr, p->p.pool, NET_IP4, sizeof(ort), OFFSETOF(ort, fn), 0, NULL); add_area_nets(oa, ac); if (oa->areaid == 0) p->backbone = oa; oa->options = ac->type | ospf_opts(p); ospf_notify_rt_lsa(oa); } static void ospf_flush_area(struct ospf_proto *p, u32 areaid) { struct top_hash_entry *en; WALK_SLIST(en, p->lsal) if ((LSA_SCOPE(en->lsa_type) == LSA_SCOPE_AREA) && (en->domain == areaid)) ospf_flush_lsa(p, en); } static void ospf_area_remove(struct ospf_area *oa) { struct ospf_proto *p = oa->po; OSPF_TRACE(D_EVENTS, "Removing area %R", oa->areaid); /* We suppose that interfaces are already removed */ ospf_flush_area(p, oa->areaid); fib_free(&oa->rtr); fib_free(&oa->net_fib); fib_free(&oa->enet_fib); if (oa->translator_timer) rfree(oa->translator_timer); p->areano--; rem_node(NODE oa); mb_free(oa); } struct ospf_area * ospf_find_area(struct ospf_proto *p, u32 aid) { struct ospf_area *oa; WALK_LIST(oa, p->area_list) if (((struct ospf_area *) oa)->areaid == aid) return oa; return NULL; } static struct ospf_iface * ospf_find_vlink(struct ospf_proto *p, u32 voa, u32 vid) { struct ospf_iface *ifa; WALK_LIST(ifa, p->iface_list) if ((ifa->type == OSPF_IT_VLINK) && (ifa->voa->areaid == voa) && (ifa->vid == vid)) return ifa; return NULL; } static int ospf_start(struct proto *P) { struct ospf_proto *p = (struct ospf_proto *) P; struct ospf_config *c = (struct ospf_config *) (P->cf); struct ospf_area_config *ac; p->router_id = proto_get_router_id(P->cf); p->ospf2 = c->ospf2; p->af_ext = c->af_ext; p->af_mc = c->af_mc; p->rfc1583 = c->rfc1583; p->stub_router = c->stub_router; p->merge_external = c->merge_external; p->instance_id = c->instance_id; p->asbr = c->asbr; p->vpn_pe = c->vpn_pe; p->ecmp = c->ecmp; p->tick = c->tick; p->disp_timer = tm_new_init(P->pool, ospf_disp, p, p->tick S, 0); tm_start(p->disp_timer, 100 MS); p->lsab_size = 256; p->lsab_used = 0; p->lsab = mb_alloc(P->pool, p->lsab_size); p->nhpool = lp_new(P->pool, 12*sizeof(struct nexthop)); init_list(&(p->iface_list)); init_list(&(p->area_list)); fib_init(&p->rtf, P->pool, ospf_get_af(p), sizeof(ort), OFFSETOF(ort, fn), 0, NULL); if (ospf_is_v3(p)) idm_init(&p->idm, P->pool, 16); p->areano = 0; p->gr = ospf_top_new(p, P->pool); s_init_list(&(p->lsal)); p->flood_event = ev_new_init(P->pool, ospf_flood_event, p); p->log_pkt_tbf = (struct tbf){ .rate = 1, .burst = 5 }; p->log_lsa_tbf = (struct tbf){ .rate = 4, .burst = 20 }; WALK_LIST(ac, c->area_list) ospf_area_add(p, ac); if (c->abr) ospf_open_vlink_sk(p); /* Add all virtual links */ struct ospf_iface_patt *ic; WALK_LIST(ic, c->vlink_list) ospf_iface_new_vlink(p, ic); return PS_UP; } static void ospf_dump(struct proto *P) { struct ospf_proto *p = (struct ospf_proto *) P; struct ospf_iface *ifa; struct ospf_neighbor *n; OSPF_TRACE(D_EVENTS, "Area number: %d", p->areano); WALK_LIST(ifa, p->iface_list) { OSPF_TRACE(D_EVENTS, "Interface: %s", ifa->ifname); OSPF_TRACE(D_EVENTS, "state: %u", ifa->state); OSPF_TRACE(D_EVENTS, "DR: %R", ifa->drid); OSPF_TRACE(D_EVENTS, "BDR: %R", ifa->bdrid); WALK_LIST(n, ifa->neigh_list) { OSPF_TRACE(D_EVENTS, " neighbor %R in state %u", n->rid, n->state); } } /* OSPF_TRACE(D_EVENTS, "LSA graph dump start:"); ospf_top_dump(p->gr, p); OSPF_TRACE(D_EVENTS, "LSA graph dump finished"); */ neigh_dump_all(); } static struct proto * ospf_init(struct proto_config *CF) { struct ospf_config *cf = (struct ospf_config *) CF; struct proto *P = proto_new(CF); P->main_channel = proto_add_channel(P, proto_cf_main_channel(CF)); P->rt_notify = ospf_rt_notify; P->if_notify = ospf_if_notify; P->ifa_notify = cf->ospf2 ? ospf_ifa_notify2 : ospf_ifa_notify3; P->preexport = ospf_preexport; P->reload_routes = ospf_reload_routes; P->make_tmp_attrs = ospf_make_tmp_attrs; P->store_tmp_attrs = ospf_store_tmp_attrs; P->rte_better = ospf_rte_better; P->rte_same = ospf_rte_same; return P; } /* If new is better return 1 */ static int ospf_rte_better(struct rte *new, struct rte *old) { if (new->u.ospf.metric1 == LSINFINITY) return 0; if(new->attrs->source < old->attrs->source) return 1; if(new->attrs->source > old->attrs->source) return 0; if(new->attrs->source == RTS_OSPF_EXT2) { if(new->u.ospf.metric2 < old->u.ospf.metric2) return 1; if(new->u.ospf.metric2 > old->u.ospf.metric2) return 0; } if (new->u.ospf.metric1 < old->u.ospf.metric1) return 1; return 0; /* Old is shorter or same */ } static int ospf_rte_same(struct rte *new, struct rte *old) { /* new->attrs == old->attrs always */ return new->u.ospf.metric1 == old->u.ospf.metric1 && new->u.ospf.metric2 == old->u.ospf.metric2 && new->u.ospf.tag == old->u.ospf.tag && new->u.ospf.router_id == old->u.ospf.router_id; } void ospf_schedule_rtcalc(struct ospf_proto *p) { if (p->calcrt) return; OSPF_TRACE(D_EVENTS, "Scheduling routing table calculation"); p->calcrt = 1; } static void ospf_reload_routes(struct channel *C) { struct ospf_proto *p = (struct ospf_proto *) C->proto; if (p->calcrt == 2) return; OSPF_TRACE(D_EVENTS, "Scheduling routing table calculation with route reload"); p->calcrt = 2; } /** * ospf_disp - invokes routing table calculation, aging and also area_disp() * @timer: timer usually called every @ospf_proto->tick second, @timer->data * point to @ospf_proto */ static void ospf_disp(timer * timer) { struct ospf_proto *p = timer->data; /* Originate or flush local topology LSAs */ ospf_update_topology(p); /* Process LSA DB */ ospf_update_lsadb(p); /* Calculate routing table */ if (p->calcrt) ospf_rt_spf(p); } /** * ospf_preexport - accept or reject new route from nest's routing table * @P: OSPF protocol instance * @new: the new route * @attrs: list of attributes * @pool: pool for allocation of attributes * * Its quite simple. It does not accept our own routes and leaves the decision on * import to the filters. */ static int ospf_preexport(struct proto *P, rte **new, struct linpool *pool UNUSED) { struct ospf_proto *p = (struct ospf_proto *) P; struct ospf_area *oa = ospf_main_area(p); rte *e = *new; /* Reject our own routes */ if (e->attrs->src->proto == P) return -1; /* Do not export routes to stub areas */ if (oa_is_stub(oa)) return -1; return 0; } static void ospf_make_tmp_attrs(struct rte *rt, struct linpool *pool) { rte_init_tmp_attrs(rt, pool, 4); rte_make_tmp_attr(rt, EA_OSPF_METRIC1, EAF_TYPE_INT, rt->u.ospf.metric1); rte_make_tmp_attr(rt, EA_OSPF_METRIC2, EAF_TYPE_INT, rt->u.ospf.metric2); rte_make_tmp_attr(rt, EA_OSPF_TAG, EAF_TYPE_INT, rt->u.ospf.tag); rte_make_tmp_attr(rt, EA_OSPF_ROUTER_ID, EAF_TYPE_ROUTER_ID, rt->u.ospf.router_id); } static void ospf_store_tmp_attrs(struct rte *rt, struct linpool *pool) { rte_init_tmp_attrs(rt, pool, 4); rt->u.ospf.metric1 = rte_store_tmp_attr(rt, EA_OSPF_METRIC1); rt->u.ospf.metric2 = rte_store_tmp_attr(rt, EA_OSPF_METRIC2); rt->u.ospf.tag = rte_store_tmp_attr(rt, EA_OSPF_TAG); rt->u.ospf.router_id = rte_store_tmp_attr(rt, EA_OSPF_ROUTER_ID); } /** * ospf_shutdown - Finish of OSPF instance * @P: OSPF protocol instance * * RFC does not define any action that should be taken before router * shutdown. To make my neighbors react as fast as possible, I send * them hello packet with empty neighbor list. They should start * their neighbor state machine with event %NEIGHBOR_1WAY. */ static int ospf_shutdown(struct proto *P) { struct ospf_proto *p = (struct ospf_proto *) P; struct ospf_iface *ifa; OSPF_TRACE(D_EVENTS, "Shutdown requested"); /* And send to all my neighbors 1WAY */ WALK_LIST(ifa, p->iface_list) ospf_iface_shutdown(ifa); /* Cleanup locked rta entries */ FIB_WALK(&p->rtf, ort, nf) { rta_free(nf->old_rta); } FIB_WALK_END; return PS_DOWN; } static void ospf_get_status(struct proto *P, byte * buf) { struct ospf_proto *p = (struct ospf_proto *) P; if (p->p.proto_state == PS_DOWN) buf[0] = 0; else { struct ospf_iface *ifa; struct ospf_neighbor *n; int adj = 0; WALK_LIST(ifa, p->iface_list) WALK_LIST(n, ifa->neigh_list) if (n->state == NEIGHBOR_FULL) adj = 1; if (adj == 0) strcpy(buf, "Alone"); else strcpy(buf, "Running"); } } static void ospf_get_route_info(rte * rte, byte * buf) { char *type = "<bug>"; switch (rte->attrs->source) { case RTS_OSPF: type = "I"; break; case RTS_OSPF_IA: type = "IA"; break; case RTS_OSPF_EXT1: type = "E1"; break; case RTS_OSPF_EXT2: type = "E2"; break; } buf += bsprintf(buf, " %s", type); buf += bsprintf(buf, " (%d/%d", rte->pref, rte->u.ospf.metric1); if (rte->attrs->source == RTS_OSPF_EXT2) buf += bsprintf(buf, "/%d", rte->u.ospf.metric2); buf += bsprintf(buf, ")"); if ((rte->attrs->source == RTS_OSPF_EXT1 || rte->attrs->source == RTS_OSPF_EXT2) && rte->u.ospf.tag) { buf += bsprintf(buf, " [%x]", rte->u.ospf.tag); } if (rte->u.ospf.router_id) buf += bsprintf(buf, " [%R]", rte->u.ospf.router_id); } static int ospf_get_attr(eattr * a, byte * buf, int buflen UNUSED) { switch (a->id) { case EA_OSPF_METRIC1: bsprintf(buf, "metric1"); return GA_NAME; case EA_OSPF_METRIC2: bsprintf(buf, "metric2"); return GA_NAME; case EA_OSPF_TAG: bsprintf(buf, "tag: 0x%08x", a->u.data); return GA_FULL; case EA_OSPF_ROUTER_ID: bsprintf(buf, "router_id"); return GA_NAME; default: return GA_UNKNOWN; } } static void ospf_area_reconfigure(struct ospf_area *oa, struct ospf_area_config *nac) { struct ospf_proto *p = oa->po; struct ospf_area_config *oac = oa->ac; struct ospf_iface *ifa, *ifx; oa->ac = nac; oa->options = nac->type | ospf_opts(p); if (nac->type != oac->type) { log(L_INFO "%s: Restarting area %R", p->p.name, oa->areaid); /* Remove area interfaces, will be re-added later */ WALK_LIST_DELSAFE(ifa, ifx, p->iface_list) if (ifa->oa == oa) { ospf_iface_shutdown(ifa); ospf_iface_remove(ifa); } /* Flush area LSAs */ ospf_flush_area(p, oa->areaid); } /* Handle net_list */ fib_free(&oa->net_fib); fib_free(&oa->enet_fib); add_area_nets(oa, nac); /* No need to handle stubnet_list */ oa->marked = 0; ospf_notify_rt_lsa(oa); } /** * ospf_reconfigure - reconfiguration hook * @P: current instance of protocol (with old configuration) * @c: new configuration requested by user * * This hook tries to be a little bit intelligent. Instance of OSPF * will survive change of many constants like hello interval, * password change, addition or deletion of some neighbor on * nonbroadcast network, cost of interface, etc. */ static int ospf_reconfigure(struct proto *P, struct proto_config *CF) { struct ospf_proto *p = (struct ospf_proto *) P; struct ospf_config *old = (struct ospf_config *) (P->cf); struct ospf_config *new = (struct ospf_config *) CF; struct ospf_area_config *oac, *nac; struct ospf_area *oa, *oax; struct ospf_iface *ifa, *ifx; struct ospf_iface_patt *ip; if (proto_get_router_id(CF) != p->router_id) return 0; if (p->ospf2 != new->ospf2) return 0; if (p->rfc1583 != new->rfc1583) return 0; if (p->instance_id != new->instance_id) return 0; if (old->abr != new->abr) return 0; if (p->areano == 1) { oac = HEAD(old->area_list); nac = HEAD(new->area_list); if (oac->type != nac->type) return 0; } if (old->vpn_pe != new->vpn_pe) return 0; if ((p->af_ext != new->af_ext) || (p->af_mc != new->af_mc)) return 0; if (!proto_configure_channel(P, &P->main_channel, proto_cf_main_channel(CF))) return 0; p->stub_router = new->stub_router; p->merge_external = new->merge_external; p->asbr = new->asbr; p->ecmp = new->ecmp; p->tick = new->tick; p->disp_timer->recurrent = p->tick S; tm_start(p->disp_timer, 10 MS); /* Mark all areas and ifaces */ WALK_LIST(oa, p->area_list) oa->marked = 1; WALK_LIST(ifa, p->iface_list) ifa->marked = 1; /* Add and update areas */ WALK_LIST(nac, new->area_list) { oa = ospf_find_area(p, nac->areaid); if (oa) ospf_area_reconfigure(oa, nac); else ospf_area_add(p, nac); } /* Add and update interfaces */ ospf_reconfigure_ifaces(p); /* Add and update vlinks */ WALK_LIST(ip, new->vlink_list) { ifa = ospf_find_vlink(p, ip->voa, ip->vid); if (ifa) ospf_iface_reconfigure(ifa, ip); else ospf_iface_new_vlink(p, ip); } /* Delete remaining ifaces and areas */ WALK_LIST_DELSAFE(ifa, ifx, p->iface_list) if (ifa->marked) { ospf_iface_shutdown(ifa); ospf_iface_remove(ifa); } WALK_LIST_DELSAFE(oa, oax, p->area_list) if (oa->marked) ospf_area_remove(oa); ospf_schedule_rtcalc(p); return 1; } void ospf_sh_neigh(struct proto *P, char *iff) { struct ospf_proto *p = (struct ospf_proto *) P; struct ospf_iface *ifa = NULL; struct ospf_neighbor *n; if (p->p.proto_state != PS_UP) { cli_msg(-1013, "%s: is not up", p->p.name); cli_msg(0, ""); return; } cli_msg(-1013, "%s:", p->p.name); cli_msg(-1013, "%-12s\t%3s\t%-15s\t%-5s\t%-10s %-12s", "Router ID", "Pri", " State", "DTime", "Interface", "Router IP"); WALK_LIST(ifa, p->iface_list) if ((iff == NULL) || patmatch(iff, ifa->ifname)) WALK_LIST(n, ifa->neigh_list) ospf_sh_neigh_info(n); cli_msg(0, ""); } void ospf_sh(struct proto *P) { struct ospf_proto *p = (struct ospf_proto *) P; struct ospf_area *oa; struct ospf_iface *ifa; struct ospf_neighbor *n; int ifano, nno, adjno, firstfib; if (p->p.proto_state != PS_UP) { cli_msg(-1014, "%s: is not up", p->p.name); cli_msg(0, ""); return; } cli_msg(-1014, "%s:", p->p.name); cli_msg(-1014, "RFC1583 compatibility: %s", (p->rfc1583 ? "enabled" : "disabled")); cli_msg(-1014, "Stub router: %s", (p->stub_router ? "Yes" : "No")); cli_msg(-1014, "RT scheduler tick: %d", p->tick); cli_msg(-1014, "Number of areas: %u", p->areano); cli_msg(-1014, "Number of LSAs in DB:\t%u", p->gr->hash_entries); WALK_LIST(oa, p->area_list) { cli_msg(-1014, "\tArea: %R (%u) %s", oa->areaid, oa->areaid, oa->areaid == 0 ? "[BACKBONE]" : ""); ifano = 0; nno = 0; adjno = 0; WALK_LIST(ifa, p->iface_list) { if (oa == ifa->oa) { ifano++; WALK_LIST(n, ifa->neigh_list) { nno++; if (n->state == NEIGHBOR_FULL) adjno++; } } } cli_msg(-1014, "\t\tStub:\t%s", oa_is_stub(oa) ? "Yes" : "No"); cli_msg(-1014, "\t\tNSSA:\t%s", oa_is_nssa(oa) ? "Yes" : "No"); cli_msg(-1014, "\t\tTransit:\t%s", oa->trcap ? "Yes" : "No"); if (oa_is_nssa(oa)) cli_msg(-1014, "\t\tNSSA translation:\t%s%s", oa->translate ? "Yes" : "No", oa->translate == TRANS_WAIT ? " (run down)" : ""); cli_msg(-1014, "\t\tNumber of interfaces:\t%u", ifano); cli_msg(-1014, "\t\tNumber of neighbors:\t%u", nno); cli_msg(-1014, "\t\tNumber of adjacent neighbors:\t%u", adjno); firstfib = 1; FIB_WALK(&oa->net_fib, struct area_net, anet) { if(firstfib) { cli_msg(-1014, "\t\tArea networks:"); firstfib = 0; } cli_msg(-1014, "\t\t\t%1N\t%s\t%s", anet->fn.addr, anet->hidden ? "Hidden" : "Advertise", anet->active ? "Active" : ""); } FIB_WALK_END; firstfib = 1; FIB_WALK(&oa->enet_fib, struct area_net, anet) { if(firstfib) { cli_msg(-1014, "\t\tArea external networks:"); firstfib = 0; } cli_msg(-1014, "\t\t\t%1N\t%s\t%s", anet->fn.addr, anet->hidden ? "Hidden" : "Advertise", anet->active ? "Active" : ""); } FIB_WALK_END; } cli_msg(0, ""); } void ospf_sh_iface(struct proto *P, char *iff) { struct ospf_proto *p = (struct ospf_proto *) P; struct ospf_iface *ifa = NULL; if (p->p.proto_state != PS_UP) { cli_msg(-1015, "%s: is not up", p->p.name); cli_msg(0, ""); return; } cli_msg(-1015, "%s:", p->p.name); WALK_LIST(ifa, p->iface_list) if ((iff == NULL) || patmatch(iff, ifa->ifname)) ospf_iface_info(ifa); cli_msg(0, ""); } /* lsa_compare_for_state() - Compare function for 'show ospf state' * * First we want to separate network-LSAs and other LSAs (because network-LSAs * will be presented as network nodes and other LSAs together as router nodes) * Network-LSAs are sorted according to network prefix, other LSAs are sorted * according to originating router id (to get all LSA needed to represent one * router node together). Then, according to LSA type, ID and age. * * For OSPFv3, we have to handle also Prefix-LSAs. We would like to put each * immediately after the referenced LSA. We will make faked LSA based on ref_ * values */ static struct ospf_lsa_header * fake_lsa_from_prefix_lsa(struct ospf_lsa_header *dst, struct ospf_lsa_header *src, struct ospf_lsa_prefix *px) { dst->age = src->age; dst->type_raw = px->ref_type; dst->id = px->ref_id; dst->rt = px->ref_rt; dst->sn = src->sn; return dst; } static int lsa_compare_ospf3; static int lsa_compare_for_state(const void *p1, const void *p2) { struct top_hash_entry *he1 = * (struct top_hash_entry **) p1; struct top_hash_entry *he2 = * (struct top_hash_entry **) p2; struct ospf_lsa_header *lsa1 = &(he1->lsa); struct ospf_lsa_header *lsa2 = &(he2->lsa); struct ospf_lsa_header lsatmp1, lsatmp2; u16 lsa1_type = he1->lsa_type; u16 lsa2_type = he2->lsa_type; if (he1->domain < he2->domain) return -1; if (he1->domain > he2->domain) return 1; /* px1 or px2 assumes OSPFv3 */ int px1 = (lsa1_type == LSA_T_PREFIX); int px2 = (lsa2_type == LSA_T_PREFIX); if (px1) { lsa1 = fake_lsa_from_prefix_lsa(&lsatmp1, lsa1, he1->lsa_body); lsa1_type = lsa1->type_raw; /* FIXME: handle unknown ref_type */ } if (px2) { lsa2 = fake_lsa_from_prefix_lsa(&lsatmp2, lsa2, he2->lsa_body); lsa2_type = lsa2->type_raw; } int nt1 = (lsa1_type == LSA_T_NET); int nt2 = (lsa2_type == LSA_T_NET); if (nt1 != nt2) return nt1 - nt2; if (nt1) { /* In OSPFv3, networks are named based on ID of DR */ if (lsa_compare_ospf3) { if (lsa1->rt < lsa2->rt) return -1; if (lsa1->rt > lsa2->rt) return 1; } /* For OSPFv2, this is IP of the network, for OSPFv3, this is interface ID */ if (lsa1->id < lsa2->id) return -1; if (lsa1->id > lsa2->id) return 1; if (px1 != px2) return px1 - px2; return lsa1->sn - lsa2->sn; } else { if (lsa1->rt < lsa2->rt) return -1; if (lsa1->rt > lsa2->rt) return 1; if (lsa1_type < lsa2_type) return -1; if (lsa1_type > lsa2_type) return 1; if (lsa1->id < lsa2->id) return -1; if (lsa1->id > lsa2->id) return 1; if (px1 != px2) return px1 - px2; return lsa1->sn - lsa2->sn; } } static int ext_compare_for_state(const void *p1, const void *p2) { struct top_hash_entry * he1 = * (struct top_hash_entry **) p1; struct top_hash_entry * he2 = * (struct top_hash_entry **) p2; struct ospf_lsa_header *lsa1 = &(he1->lsa); struct ospf_lsa_header *lsa2 = &(he2->lsa); if (lsa1->rt < lsa2->rt) return -1; if (lsa1->rt > lsa2->rt) return 1; if (lsa1->id < lsa2->id) return -1; if (lsa1->id > lsa2->id) return 1; return lsa1->sn - lsa2->sn; } static inline void show_lsa_distance(struct top_hash_entry *he) { if (he->color == INSPF) cli_msg(-1016, "\t\tdistance %u", he->dist); else cli_msg(-1016, "\t\tunreachable"); } static inline void show_lsa_router(struct ospf_proto *p, struct top_hash_entry *he, int verbose) { struct ospf_lsa_rt_walk rtl; cli_msg(-1016, ""); cli_msg(-1016, "\trouter %R", he->lsa.rt); show_lsa_distance(he); lsa_walk_rt_init(p, he, &rtl); while (lsa_walk_rt(&rtl)) if (rtl.type == LSART_VLNK) cli_msg(-1016, "\t\tvlink %R metric %u", rtl.id, rtl.metric); lsa_walk_rt_init(p, he, &rtl); while (lsa_walk_rt(&rtl)) if (rtl.type == LSART_PTP) cli_msg(-1016, "\t\trouter %R metric %u", rtl.id, rtl.metric); lsa_walk_rt_init(p, he, &rtl); while (lsa_walk_rt(&rtl)) if (rtl.type == LSART_NET) { if (ospf_is_v2(p)) { /* In OSPFv2, we try to find network-LSA to get prefix/pxlen */ struct top_hash_entry *net_he = ospf_hash_find_net2(p->gr, he->domain, rtl.id); if (net_he && (net_he->lsa.age < LSA_MAXAGE)) { struct ospf_lsa_header *net_lsa = &(net_he->lsa); struct ospf_lsa_net *net_ln = net_he->lsa_body; cli_msg(-1016, "\t\tnetwork %I/%d metric %u", ipa_from_u32(net_lsa->id & net_ln->optx), u32_masklen(net_ln->optx), rtl.metric); } else cli_msg(-1016, "\t\tnetwork [%R] metric %u", rtl.id, rtl.metric); } else cli_msg(-1016, "\t\tnetwork [%R-%u] metric %u", rtl.id, rtl.nif, rtl.metric); } if (ospf_is_v2(p) && verbose) { lsa_walk_rt_init(p, he, &rtl); while (lsa_walk_rt(&rtl)) if (rtl.type == LSART_STUB) cli_msg(-1016, "\t\tstubnet %I/%d metric %u", ipa_from_u32(rtl.id), u32_masklen(rtl.data), rtl.metric); } } static inline void show_lsa_network(struct top_hash_entry *he, int ospf2) { struct ospf_lsa_header *lsa = &(he->lsa); struct ospf_lsa_net *ln = he->lsa_body; u32 i; if (ospf2) { cli_msg(-1016, ""); cli_msg(-1016, "\tnetwork %I/%d", ipa_from_u32(lsa->id & ln->optx), u32_masklen(ln->optx)); cli_msg(-1016, "\t\tdr %R", lsa->rt); } else { cli_msg(-1016, ""); cli_msg(-1016, "\tnetwork [%R-%u]", lsa->rt, lsa->id); } show_lsa_distance(he); for (i = 0; i < lsa_net_count(lsa); i++) cli_msg(-1016, "\t\trouter %R", ln->routers[i]); } static inline void show_lsa_sum_net(struct top_hash_entry *he, int ospf2, int af) { net_addr net; u8 pxopts; u32 metric; lsa_parse_sum_net(he, ospf2, af, &net, &pxopts, &metric); cli_msg(-1016, "\t\txnetwork %N metric %u", &net, metric); } static inline void show_lsa_sum_rt(struct top_hash_entry *he, int ospf2) { u32 metric; u32 dst_rid; u32 options; lsa_parse_sum_rt(he, ospf2, &dst_rid, &metric, &options); cli_msg(-1016, "\t\txrouter %R metric %u", dst_rid, metric); } static inline void show_lsa_external(struct top_hash_entry *he, int ospf2, int af) { struct ospf_lsa_ext_local rt; char str_via[IPA_MAX_TEXT_LENGTH + 8] = ""; char str_tag[16] = ""; if (he->lsa_type == LSA_T_EXT) he->domain = 0; /* Unmark the LSA */ lsa_parse_ext(he, ospf2, af, &rt); if (rt.fbit) bsprintf(str_via, " via %I", rt.fwaddr); if (rt.tag) bsprintf(str_tag, " tag %08x", rt.tag); cli_msg(-1016, "\t\t%s %N metric%s %u%s%s", (he->lsa_type == LSA_T_NSSA) ? "nssa-ext" : "external", &rt.net, rt.ebit ? "2" : "", rt.metric, str_via, str_tag); } static inline void show_lsa_prefix(struct top_hash_entry *he, struct top_hash_entry *cnode, int af) { struct ospf_lsa_prefix *px = he->lsa_body; u32 *buf; int i; /* We check whether given prefix-LSA is related to the current node */ if ((px->ref_type != cnode->lsa.type_raw) || (px->ref_rt != cnode->lsa.rt)) return; if ((px->ref_type == LSA_T_RT) && (px->ref_id != 0)) return; if ((px->ref_type == LSA_T_NET) && (px->ref_id != cnode->lsa.id)) return; buf = px->rest; for (i = 0; i < px->pxcount; i++) { net_addr net; u8 pxopts; u16 metric; buf = ospf3_get_prefix(buf, af, &net, &pxopts, &metric); if (px->ref_type == LSA_T_RT) cli_msg(-1016, "\t\tstubnet %N metric %u", &net, metric); else cli_msg(-1016, "\t\taddress %N", &net); } } void ospf_sh_state(struct proto *P, int verbose, int reachable) { struct ospf_proto *p = (struct ospf_proto *) P; int ospf2 = ospf_is_v2(p); int af = ospf_get_af(p); uint i, ix, j1, jx; u32 last_area = 0xFFFFFFFF; if (p->p.proto_state != PS_UP) { cli_msg(-1016, "%s: is not up", p->p.name); cli_msg(0, ""); return; } /* We store interesting area-scoped LSAs in array hea and global-scoped (LSA_T_EXT) LSAs in array hex */ uint num = p->gr->hash_entries; struct top_hash_entry *hea[num]; struct top_hash_entry *hex[verbose ? num : 0]; struct top_hash_entry *he; struct top_hash_entry *cnode = NULL; j1 = jx = 0; WALK_SLIST(he, p->lsal) { int accept; if (he->lsa.age == LSA_MAXAGE) continue; switch (he->lsa_type) { case LSA_T_RT: case LSA_T_NET: accept = 1; break; case LSA_T_SUM_NET: case LSA_T_SUM_RT: case LSA_T_NSSA: case LSA_T_PREFIX: accept = verbose; break; case LSA_T_EXT: if (verbose) { he->domain = 1; /* Abuse domain field to mark the LSA */ hex[jx++] = he; } /* fallthrough */ default: accept = 0; } if (accept) hea[j1++] = he; } ASSERT(j1 <= num && jx <= num); lsa_compare_ospf3 = !ospf2; qsort(hea, j1, sizeof(struct top_hash_entry *), lsa_compare_for_state); qsort(hex, jx, sizeof(struct top_hash_entry *), ext_compare_for_state); /* * This code is a bit tricky, we have a primary LSAs (router and * network) that are presented as a node, and secondary LSAs that * are presented as a part of a primary node. cnode represents an * currently opened node (whose header was presented). The LSAs are * sorted to get secondary LSAs just after related primary LSA (if * available). We present secondary LSAs only when related primary * LSA is opened. * * AS-external LSAs are stored separately as they might be presented * several times (for each area when related ASBR is opened). When * the node is closed, related external routes are presented. We * also have to take into account that in OSPFv3, there might be * more router-LSAs and only the first should be considered as a * primary. This is handled by not closing old router-LSA when next * one is processed (which is not opened because there is already * one opened). */ ix = 0; for (i = 0; i < j1; i++) { he = hea[i]; /* If there is no opened node, we open the LSA (if appropriate) or skip to the next one */ if (!cnode) { if (((he->lsa_type == LSA_T_RT) || (he->lsa_type == LSA_T_NET)) && ((he->color == INSPF) || !reachable)) { cnode = he; if (he->domain != last_area) { cli_msg(-1016, ""); cli_msg(-1016, "area %R", he->domain); last_area = he->domain; ix = 0; } } else continue; } ASSERT(cnode && (he->domain == last_area) && (he->lsa.rt == cnode->lsa.rt)); switch (he->lsa_type) { case LSA_T_RT: if (he->lsa.id == cnode->lsa.id) show_lsa_router(p, he, verbose); break; case LSA_T_NET: show_lsa_network(he, ospf2); break; case LSA_T_SUM_NET: if (cnode->lsa_type == LSA_T_RT) show_lsa_sum_net(he, ospf2, af); break; case LSA_T_SUM_RT: if (cnode->lsa_type == LSA_T_RT) show_lsa_sum_rt(he, ospf2); break; case LSA_T_EXT: case LSA_T_NSSA: show_lsa_external(he, ospf2, af); break; case LSA_T_PREFIX: show_lsa_prefix(he, cnode, af); break; } /* In these cases, we close the current node */ if ((i+1 == j1) || (hea[i+1]->domain != last_area) || (hea[i+1]->lsa.rt != cnode->lsa.rt) || (hea[i+1]->lsa_type == LSA_T_NET)) { while ((ix < jx) && (hex[ix]->lsa.rt < cnode->lsa.rt)) ix++; while ((ix < jx) && (hex[ix]->lsa.rt == cnode->lsa.rt)) show_lsa_external(hex[ix++], ospf2, af); cnode = NULL; } } int hdr = 0; u32 last_rt = 0xFFFFFFFF; for (ix = 0; ix < jx; ix++) { he = hex[ix]; /* If it is still marked, we show it now. */ if (he->domain) { he->domain = 0; if ((he->color != INSPF) && reachable) continue; if (!hdr) { cli_msg(-1016, ""); cli_msg(-1016, "other ASBRs"); hdr = 1; } if (he->lsa.rt != last_rt) { cli_msg(-1016, ""); cli_msg(-1016, "\trouter %R", he->lsa.rt); last_rt = he->lsa.rt; } show_lsa_external(he, ospf2, af); } } cli_msg(0, ""); } static int lsa_compare_for_lsadb(const void *p1, const void *p2) { struct top_hash_entry * he1 = * (struct top_hash_entry **) p1; struct top_hash_entry * he2 = * (struct top_hash_entry **) p2; struct ospf_lsa_header *lsa1 = &(he1->lsa); struct ospf_lsa_header *lsa2 = &(he2->lsa); int sc1 = LSA_SCOPE(he1->lsa_type); int sc2 = LSA_SCOPE(he2->lsa_type); if (sc1 != sc2) return sc2 - sc1; if (he1->domain != he2->domain) return he1->domain - he2->domain; if (lsa1->rt != lsa2->rt) return lsa1->rt - lsa2->rt; if (lsa1->id != lsa2->id) return lsa1->id - lsa2->id; if (he1->lsa_type != he2->lsa_type) return he1->lsa_type - he2->lsa_type; return lsa1->sn - lsa2->sn; } void ospf_sh_lsadb(struct lsadb_show_data *ld) { struct ospf_proto *p = ld->proto; uint num = p->gr->hash_entries; uint i, j; int last_dscope = -1; u32 last_domain = 0; u16 type_mask = ospf_is_v2(p) ? 0x00ff : 0xffff; /* see lsa_etype() */ if (p->p.proto_state != PS_UP) { cli_msg(-1017, "%s: is not up", p->p.name); cli_msg(0, ""); return; } if (ld->router == SH_ROUTER_SELF) ld->router = p->router_id; struct top_hash_entry *hea[num]; struct top_hash_entry *he; j = 0; WALK_SLIST(he, p->lsal) if (he->lsa_body) hea[j++] = he; ASSERT(j <= num); qsort(hea, j, sizeof(struct top_hash_entry *), lsa_compare_for_lsadb); for (i = 0; i < j; i++) { struct ospf_lsa_header *lsa = &(hea[i]->lsa); u16 lsa_type = lsa->type_raw & type_mask; u16 dscope = LSA_SCOPE(hea[i]->lsa_type); /* Hack: 1 is used for LSA_SCOPE_LINK, fixed by & 0xf000 */ if (ld->scope && (dscope != (ld->scope & 0xf000))) continue; if ((ld->scope == LSA_SCOPE_AREA) && (hea[i]->domain != ld->area)) continue; /* For user convenience ignore high nibble */ if (ld->type && ((lsa_type & 0x0fff) != (ld->type & 0x0fff))) continue; if (ld->lsid && (lsa->id != ld->lsid)) continue; if (ld->router && (lsa->rt != ld->router)) continue; if ((dscope != last_dscope) || (hea[i]->domain != last_domain)) { cli_msg(-1017, ""); switch (dscope) { case LSA_SCOPE_AS: cli_msg(-1017, "Global"); break; case LSA_SCOPE_AREA: cli_msg(-1017, "Area %R", hea[i]->domain); break; case LSA_SCOPE_LINK: { struct iface *ifa = if_find_by_index(hea[i]->domain); cli_msg(-1017, "Link %s", (ifa != NULL) ? ifa->name : "?"); } break; } cli_msg(-1017, ""); cli_msg(-1017," Type LS ID Router Sequence Age Checksum"); last_dscope = dscope; last_domain = hea[i]->domain; } cli_msg(-1017," %04x %-15R %-15R %08x %5u %04x", lsa_type, lsa->id, lsa->rt, lsa->sn, lsa->age, lsa->checksum); } cli_msg(0, ""); } struct protocol proto_ospf = { .name = "OSPF", .template = "ospf%d", .class = PROTOCOL_OSPF, .preference = DEF_PREF_OSPF, .channel_mask = NB_IP, .proto_size = sizeof(struct ospf_proto), .config_size = sizeof(struct ospf_config), .init = ospf_init, .dump = ospf_dump, .start = ospf_start, .shutdown = ospf_shutdown, .reconfigure = ospf_reconfigure, .get_status = ospf_get_status, .get_attr = ospf_get_attr, .get_route_info = ospf_get_route_info };