/*
 *	BIRD -- The Border Gateway Protocol
 *
 *	(c) 2000 Martin Mares <mj@ucw.cz>
 *
 *	Can be freely distributed and used under the terms of the GNU GPL.
 */

/**
 * DOC: Border Gateway Protocol
 *
 * The BGP protocol is implemented in three parts: |bgp.c| which takes care of the
 * connection and most of the interface with BIRD core, |packets.c| handling
 * both incoming and outgoing BGP packets and |attrs.c| containing functions for
 * manipulation with BGP attribute lists.
 *
 * As opposed to the other existing routing daemons, BIRD has a sophisticated core
 * architecture which is able to keep all the information needed by BGP in the
 * primary routing table, therefore no complex data structures like a central
 * BGP table are needed. This increases memory footprint of a BGP router with
 * many connections, but not too much and, which is more important, it makes
 * BGP much easier to implement.
 *
 * Each instance of BGP (corresponding to a single BGP peer) is described by a &bgp_proto
 * structure to which are attached individual connections represented by &bgp_connection
 * (usually, there exists only one connection, but during BGP session setup, there
 * can be more of them). The connections are handled according to the BGP state machine
 * defined in the RFC with all the timers and all the parameters configurable.
 *
 * In incoming direction, we listen on the connection's socket and each time we receive
 * some input, we pass it to bgp_rx(). It decodes packet headers and the markers and
 * passes complete packets to bgp_rx_packet() which distributes the packet according
 * to its type.
 *
 * In outgoing direction, we gather all the routing updates and sort them to buckets
 * (&bgp_bucket) according to their attributes (we keep a hash table for fast comparison
 * of &rta's and a &fib which helps us to find if we already have another route for
 * the same destination queued for sending, so that we can replace it with the new one
 * immediately instead of sending both updates). There also exists a special bucket holding
 * all the route withdrawals which cannot be queued anywhere else as they don't have any
 * attributes. If we have any packet to send (due to either new routes or the connection
 * tracking code wanting to send a Open, Keepalive or Notification message), we call
 * bgp_schedule_packet() which sets the corresponding bit in a @packet_to_send
 * bit field in &bgp_conn and as soon as the transmit socket buffer becomes empty,
 * we call bgp_fire_tx(). It inspects state of all the packet type bits and calls
 * the corresponding bgp_create_xx() functions, eventually rescheduling the same packet
 * type if we have more data of the same type to send.
 *
 * The processing of attributes consists of two functions: bgp_decode_attrs() for checking
 * of the attribute blocks and translating them to the language of BIRD's extended attributes
 * and bgp_encode_attrs() which does the converse. Both functions are built around a
 * @bgp_attr_table array describing all important characteristics of all known attributes.
 * Unknown transitive attributes are attached to the route as %EAF_TYPE_OPAQUE byte streams.
 *
 * BGP protocol implements graceful restart in both restarting (local restart)
 * and receiving (neighbor restart) roles. The first is handled mostly by the
 * graceful restart code in the nest, BGP protocol just handles capabilities,
 * sets @gr_wait and locks graceful restart until end-of-RIB mark is received.
 * The second is implemented by internal restart of the BGP state to %BS_IDLE
 * and protocol state to %PS_START, but keeping the protocol up from the core
 * point of view and therefore maintaining received routes. Routing table
 * refresh cycle (rt_refresh_begin(), rt_refresh_end()) is used for removing
 * stale routes after reestablishment of BGP session during graceful restart.
 */

#undef LOCAL_DEBUG

#include "nest/bird.h"
#include "nest/iface.h"
#include "nest/protocol.h"
#include "nest/route.h"
#include "nest/cli.h"
#include "nest/locks.h"
#include "conf/conf.h"
#include "lib/socket.h"
#include "lib/resource.h"
#include "lib/string.h"

#include "bgp.h"


struct linpool *bgp_linpool;		/* Global temporary pool */
static sock *bgp_listen_sk;		/* Global listening socket */
static int bgp_counter;			/* Number of protocol instances using the listening socket */

static void bgp_close(struct bgp_proto *p, int apply_md5);
static void bgp_connect(struct bgp_proto *p);
static void bgp_active(struct bgp_proto *p);
static sock *bgp_setup_listen_sk(ip_addr addr, unsigned port, u32 flags);
static void bgp_update_bfd(struct bgp_proto *p, int use_bfd);


/**
 * bgp_open - open a BGP instance
 * @p: BGP instance
 *
 * This function allocates and configures shared BGP resources.
 * Should be called as the last step during initialization
 * (when lock is acquired and neighbor is ready).
 * When error, state changed to PS_DOWN, -1 is returned and caller
 * should return immediately.
 */
static int
bgp_open(struct bgp_proto *p)
{
  struct config *cfg = p->cf->c.global;
  int errcode;

  if (!bgp_listen_sk)
    bgp_listen_sk = bgp_setup_listen_sk(cfg->listen_bgp_addr, cfg->listen_bgp_port, cfg->listen_bgp_flags);

  if (!bgp_listen_sk)
    {
      errcode = BEM_NO_SOCKET;
      goto err;
    }

  if (!bgp_linpool)
    bgp_linpool = lp_new(&root_pool, 4080);

  bgp_counter++;

  if (p->cf->password)
    if (sk_set_md5_auth(bgp_listen_sk, p->cf->source_addr, p->cf->remote_ip,
			p->cf->iface, p->cf->password, p->cf->setkey) < 0)
      {
	sk_log_error(bgp_listen_sk, p->p.name);
	bgp_close(p, 0);
	errcode = BEM_INVALID_MD5;
	goto err;
      }

  return 0;

err:
  p->p.disabled = 1;
  bgp_store_error(p, NULL, BE_MISC, errcode);
  proto_notify_state(&p->p, PS_DOWN);
  return -1;
}

static void
bgp_startup(struct bgp_proto *p)
{
  BGP_TRACE(D_EVENTS, "Started");
  p->start_state = p->cf->capabilities ? BSS_CONNECT : BSS_CONNECT_NOCAP;

  if (!p->cf->passive)
    bgp_active(p);
}

static void
bgp_startup_timeout(timer *t)
{
  bgp_startup(t->data);
}


static void
bgp_initiate(struct bgp_proto *p)
{
  int rv = bgp_open(p);
  if (rv < 0)
    return;

  if (p->cf->bfd)
    bgp_update_bfd(p, p->cf->bfd);

  if (p->startup_delay)
    {
      p->start_state = BSS_DELAY;
      BGP_TRACE(D_EVENTS, "Startup delayed by %d seconds due to errors", p->startup_delay);
      bgp_start_timer(p->startup_timer, p->startup_delay);
    }
  else
    bgp_startup(p);
}

/**
 * bgp_close - close a BGP instance
 * @p: BGP instance
 * @apply_md5: 0 to disable unsetting MD5 auth
 *
 * This function frees and deconfigures shared BGP resources.
 * @apply_md5 is set to 0 when bgp_close is called as a cleanup
 * from failed bgp_open().
 */
static void
bgp_close(struct bgp_proto *p, int apply_md5)
{
  ASSERT(bgp_counter);
  bgp_counter--;

  if (p->cf->password && apply_md5)
    if (sk_set_md5_auth(bgp_listen_sk, p->cf->source_addr, p->cf->remote_ip,
			p->cf->iface, NULL, p->cf->setkey) < 0)
      sk_log_error(bgp_listen_sk, p->p.name);

  if (!bgp_counter)
    {
      rfree(bgp_listen_sk);
      bgp_listen_sk = NULL;
      rfree(bgp_linpool);
      bgp_linpool = NULL;
    }
}

/**
 * bgp_start_timer - start a BGP timer
 * @t: timer
 * @value: time to fire (0 to disable the timer)
 *
 * This functions calls tm_start() on @t with time @value and the
 * amount of randomization suggested by the BGP standard. Please use
 * it for all BGP timers.
 */
void
bgp_start_timer(timer *t, int value)
{
  if (value)
    {
      /* The randomization procedure is specified in RFC 1771: 9.2.3.3 */
      t->randomize = value / 4;
      tm_start(t, value - t->randomize);
    }
  else
    tm_stop(t);
}

/**
 * bgp_close_conn - close a BGP connection
 * @conn: connection to close
 *
 * This function takes a connection described by the &bgp_conn structure,
 * closes its socket and frees all resources associated with it.
 */
void
bgp_close_conn(struct bgp_conn *conn)
{
  // struct bgp_proto *p = conn->bgp;

  DBG("BGP: Closing connection\n");
  conn->packets_to_send = 0;
  rfree(conn->connect_retry_timer);
  conn->connect_retry_timer = NULL;
  rfree(conn->keepalive_timer);
  conn->keepalive_timer = NULL;
  rfree(conn->hold_timer);
  conn->hold_timer = NULL;
  rfree(conn->sk);
  conn->sk = NULL;
  rfree(conn->tx_ev);
  conn->tx_ev = NULL;
}


/**
 * bgp_update_startup_delay - update a startup delay
 * @p: BGP instance
 *
 * This function updates a startup delay that is used to postpone next BGP connect.
 * It also handles disable_after_error and might stop BGP instance when error
 * happened and disable_after_error is on.
 *
 * It should be called when BGP protocol error happened.
 */
void
bgp_update_startup_delay(struct bgp_proto *p)
{
  struct bgp_config *cf = p->cf;

  DBG("BGP: Updating startup delay\n");

  if (p->last_proto_error && ((now - p->last_proto_error) >= (int) cf->error_amnesia_time))
    p->startup_delay = 0;

  p->last_proto_error = now;

  if (cf->disable_after_error)
    {
      p->startup_delay = 0;
      p->p.disabled = 1;
      return;
    }

  if (!p->startup_delay)
    p->startup_delay = cf->error_delay_time_min;
  else
    p->startup_delay = MIN(2 * p->startup_delay, cf->error_delay_time_max);
}

static void
bgp_graceful_close_conn(struct bgp_conn *conn, unsigned subcode)
{
  switch (conn->state)
    {
    case BS_IDLE:
    case BS_CLOSE:
      return;
    case BS_CONNECT:
    case BS_ACTIVE:
      bgp_conn_enter_idle_state(conn);
      return;
    case BS_OPENSENT:
    case BS_OPENCONFIRM:
    case BS_ESTABLISHED:
      bgp_error(conn, 6, subcode, NULL, 0);
      return;
    default:
      bug("bgp_graceful_close_conn: Unknown state %d", conn->state);
    }
}

static void
bgp_down(struct bgp_proto *p)
{
  if (p->start_state > BSS_PREPARE)
    bgp_close(p, 1);

  BGP_TRACE(D_EVENTS, "Down");
  proto_notify_state(&p->p, PS_DOWN);
}

static void
bgp_decision(void *vp)
{
  struct bgp_proto *p = vp;

  DBG("BGP: Decision start\n");
  if ((p->p.proto_state == PS_START)
      && (p->outgoing_conn.state == BS_IDLE)
      && (p->incoming_conn.state != BS_OPENCONFIRM)
      && (!p->cf->passive))
    bgp_active(p);

  if ((p->p.proto_state == PS_STOP)
      && (p->outgoing_conn.state == BS_IDLE)
      && (p->incoming_conn.state == BS_IDLE))
    bgp_down(p);
}

void
bgp_stop(struct bgp_proto *p, unsigned subcode)
{
  proto_notify_state(&p->p, PS_STOP);
  bgp_graceful_close_conn(&p->outgoing_conn, subcode);
  bgp_graceful_close_conn(&p->incoming_conn, subcode);
  ev_schedule(p->event);
}

static inline void
bgp_conn_set_state(struct bgp_conn *conn, unsigned new_state)
{
  if (conn->bgp->p.mrtdump & MD_STATES)
    mrt_dump_bgp_state_change(conn, conn->state, new_state);

  conn->state = new_state;
}

void
bgp_conn_enter_openconfirm_state(struct bgp_conn *conn)
{
  /* Really, most of the work is done in bgp_rx_open(). */
  bgp_conn_set_state(conn, BS_OPENCONFIRM);
}

void
bgp_conn_enter_established_state(struct bgp_conn *conn)
{
  struct bgp_proto *p = conn->bgp;

  BGP_TRACE(D_EVENTS, "BGP session established");
  DBG("BGP: UP!!!\n");

  /* For multi-hop BGP sessions */
  if (ipa_zero(p->source_addr))
    p->source_addr = conn->sk->saddr;

  conn->sk->fast_rx = 0;

  p->conn = conn;
  p->last_error_class = 0;
  p->last_error_code = 0;
  p->feed_state = BFS_NONE;
  p->load_state = BFS_NONE;
  bgp_init_bucket_table(p);
  bgp_init_prefix_table(p, 8);

  int peer_gr_ready = conn->peer_gr_aware && !(conn->peer_gr_flags & BGP_GRF_RESTART);

  if (p->p.gr_recovery && !peer_gr_ready)
    proto_graceful_restart_unlock(&p->p);

  if (p->p.gr_recovery && (p->cf->gr_mode == BGP_GR_ABLE) && peer_gr_ready)
    p->p.gr_wait = 1;

  if (p->gr_active)
    tm_stop(p->gr_timer);

  if (p->gr_active && (!conn->peer_gr_able || !(conn->peer_gr_aflags & BGP_GRF_FORWARDING)))
    bgp_graceful_restart_done(p);

  /* GR capability implies that neighbor will send End-of-RIB */
  if (conn->peer_gr_aware)
    p->load_state = BFS_LOADING;

  /* proto_notify_state() will likely call bgp_feed_begin(), setting p->feed_state */

  bgp_conn_set_state(conn, BS_ESTABLISHED);
  proto_notify_state(&p->p, PS_UP);
}

static void
bgp_conn_leave_established_state(struct bgp_proto *p)
{
  BGP_TRACE(D_EVENTS, "BGP session closed");
  p->conn = NULL;

  if (p->p.proto_state == PS_UP)
    bgp_stop(p, 0);
}

void
bgp_conn_enter_close_state(struct bgp_conn *conn)
{
  struct bgp_proto *p = conn->bgp;
  int os = conn->state;

  bgp_conn_set_state(conn, BS_CLOSE);
  tm_stop(conn->keepalive_timer);
  conn->sk->rx_hook = NULL;

  /* Timeout for CLOSE state, if we cannot send notification soon then we just hangup */
  bgp_start_timer(conn->hold_timer, 10);

  if (os == BS_ESTABLISHED)
    bgp_conn_leave_established_state(p);
}

void
bgp_conn_enter_idle_state(struct bgp_conn *conn)
{
  struct bgp_proto *p = conn->bgp;
  int os = conn->state;

  bgp_close_conn(conn);
  bgp_conn_set_state(conn, BS_IDLE);
  ev_schedule(p->event);

  if (os == BS_ESTABLISHED)
    bgp_conn_leave_established_state(p);
}

/**
 * bgp_handle_graceful_restart - handle detected BGP graceful restart
 * @p: BGP instance
 *
 * This function is called when a BGP graceful restart of the neighbor is
 * detected (when the TCP connection fails or when a new TCP connection
 * appears). The function activates processing of the restart - starts routing
 * table refresh cycle and activates BGP restart timer. The protocol state goes
 * back to %PS_START, but changing BGP state back to %BS_IDLE is left for the
 * caller.
 */
void
bgp_handle_graceful_restart(struct bgp_proto *p)
{
  ASSERT(p->conn && (p->conn->state == BS_ESTABLISHED) && p->gr_ready);

  BGP_TRACE(D_EVENTS, "Neighbor graceful restart detected%s",
	    p->gr_active ? " - already pending" : "");
  proto_notify_state(&p->p, PS_START);

  if (p->gr_active)
    rt_refresh_end(p->p.main_ahook->table, p->p.main_ahook);

  p->gr_active = 1;
  bgp_start_timer(p->gr_timer, p->conn->peer_gr_time);
  rt_refresh_begin(p->p.main_ahook->table, p->p.main_ahook);
}

/**
 * bgp_graceful_restart_done - finish active BGP graceful restart
 * @p: BGP instance
 *
 * This function is called when the active BGP graceful restart of the neighbor
 * should be finished - either successfully (the neighbor sends all paths and
 * reports end-of-RIB on the new session) or unsuccessfully (the neighbor does
 * not support BGP graceful restart on the new session). The function ends
 * routing table refresh cycle and stops BGP restart timer.
 */
void
bgp_graceful_restart_done(struct bgp_proto *p)
{
  BGP_TRACE(D_EVENTS, "Neighbor graceful restart done");
  p->gr_active = 0;
  tm_stop(p->gr_timer);
  rt_refresh_end(p->p.main_ahook->table, p->p.main_ahook);
}

/**
 * bgp_graceful_restart_timeout - timeout of graceful restart 'restart timer'
 * @t: timer
 *
 * This function is a timeout hook for @gr_timer, implementing BGP restart time
 * limit for reestablisment of the BGP session after the graceful restart. When
 * fired, we just proceed with the usual protocol restart.
 */

static void
bgp_graceful_restart_timeout(timer *t)
{
  struct bgp_proto *p = t->data;

  BGP_TRACE(D_EVENTS, "Neighbor graceful restart timeout");
  bgp_stop(p, 0);
}


/**
 * bgp_refresh_begin - start incoming enhanced route refresh sequence
 * @p: BGP instance
 *
 * This function is called when an incoming enhanced route refresh sequence is
 * started by the neighbor, demarcated by the BoRR packet. The function updates
 * the load state and starts the routing table refresh cycle. Note that graceful
 * restart also uses routing table refresh cycle, but RFC 7313 and load states
 * ensure that these two sequences do not overlap.
 */
void
bgp_refresh_begin(struct bgp_proto *p)
{
  if (p->load_state == BFS_LOADING)
    { log(L_WARN "%s: BEGIN-OF-RR received before END-OF-RIB, ignoring", p->p.name); return; }

  p->load_state = BFS_REFRESHING;
  rt_refresh_begin(p->p.main_ahook->table, p->p.main_ahook);
}

/**
 * bgp_refresh_end - finish incoming enhanced route refresh sequence
 * @p: BGP instance
 *
 * This function is called when an incoming enhanced route refresh sequence is
 * finished by the neighbor, demarcated by the EoRR packet. The function updates
 * the load state and ends the routing table refresh cycle. Routes not received
 * during the sequence are removed by the nest.
 */
void
bgp_refresh_end(struct bgp_proto *p)
{
  if (p->load_state != BFS_REFRESHING)
    { log(L_WARN "%s: END-OF-RR received without prior BEGIN-OF-RR, ignoring", p->p.name); return; }

  p->load_state = BFS_NONE;
  rt_refresh_end(p->p.main_ahook->table, p->p.main_ahook);
}


static void
bgp_send_open(struct bgp_conn *conn)
{
  conn->start_state = conn->bgp->start_state;

  // Default values, possibly changed by receiving capabilities.
  conn->advertised_as = 0;
  conn->peer_refresh_support = 0;
  conn->peer_as4_support = 0;
  conn->peer_add_path = 0;
  conn->peer_enhanced_refresh_support = 0;
  conn->peer_gr_aware = 0;
  conn->peer_gr_able = 0;
  conn->peer_gr_time = 0;
  conn->peer_gr_flags = 0;
  conn->peer_gr_aflags = 0;
  conn->peer_ext_messages_support = 0;

  DBG("BGP: Sending open\n");
  conn->sk->rx_hook = bgp_rx;
  conn->sk->tx_hook = bgp_tx;
  tm_stop(conn->connect_retry_timer);
  bgp_schedule_packet(conn, PKT_OPEN);
  bgp_conn_set_state(conn, BS_OPENSENT);
  bgp_start_timer(conn->hold_timer, conn->bgp->cf->initial_hold_time);
}

static void
bgp_connected(sock *sk)
{
  struct bgp_conn *conn = sk->data;
  struct bgp_proto *p = conn->bgp;

  BGP_TRACE(D_EVENTS, "Connected");
  bgp_send_open(conn);
}

static void
bgp_connect_timeout(timer *t)
{
  struct bgp_conn *conn = t->data;
  struct bgp_proto *p = conn->bgp;

  DBG("BGP: connect_timeout\n");
  if (p->p.proto_state == PS_START)
    {
      bgp_close_conn(conn);
      bgp_connect(p);
    }
  else
    bgp_conn_enter_idle_state(conn);
}

static void
bgp_sock_err(sock *sk, int err)
{
  struct bgp_conn *conn = sk->data;
  struct bgp_proto *p = conn->bgp;

  /*
   * This error hook may be called either asynchronously from main
   * loop, or synchronously from sk_send().  But sk_send() is called
   * only from bgp_tx() and bgp_kick_tx(), which are both called
   * asynchronously from main loop. Moreover, they end if err hook is
   * called. Therefore, we could suppose that it is always called
   * asynchronously.
   */

  bgp_store_error(p, conn, BE_SOCKET, err);

  if (err)
    BGP_TRACE(D_EVENTS, "Connection lost (%M)", err);
  else
    BGP_TRACE(D_EVENTS, "Connection closed");

  if ((conn->state == BS_ESTABLISHED) && p->gr_ready)
    bgp_handle_graceful_restart(p);

  bgp_conn_enter_idle_state(conn);
}

static void
bgp_hold_timeout(timer *t)
{
  struct bgp_conn *conn = t->data;
  struct bgp_proto *p = conn->bgp;

  DBG("BGP: Hold timeout\n");

  /* We are already closing the connection - just do hangup */
  if (conn->state == BS_CLOSE)
  {
    BGP_TRACE(D_EVENTS, "Connection stalled");
    bgp_conn_enter_idle_state(conn);
    return;
  }

  /* If there is something in input queue, we are probably congested
     and perhaps just not processed BGP packets in time. */

  if (sk_rx_ready(conn->sk) > 0)
    bgp_start_timer(conn->hold_timer, 10);
  else
    bgp_error(conn, 4, 0, NULL, 0);
}

static void
bgp_keepalive_timeout(timer *t)
{
  struct bgp_conn *conn = t->data;

  DBG("BGP: Keepalive timer\n");
  bgp_schedule_packet(conn, PKT_KEEPALIVE);

  /* Kick TX a bit faster */
  if (ev_active(conn->tx_ev))
    ev_run(conn->tx_ev);
}

static void
bgp_setup_conn(struct bgp_proto *p, struct bgp_conn *conn)
{
  timer *t;

  conn->sk = NULL;
  conn->bgp = p;
  conn->packets_to_send = 0;

  t = conn->connect_retry_timer = tm_new(p->p.pool);
  t->hook = bgp_connect_timeout;
  t->data = conn;
  t = conn->hold_timer = tm_new(p->p.pool);
  t->hook = bgp_hold_timeout;
  t->data = conn;
  t = conn->keepalive_timer = tm_new(p->p.pool);
  t->hook = bgp_keepalive_timeout;
  t->data = conn;
  conn->tx_ev = ev_new(p->p.pool);
  conn->tx_ev->hook = bgp_kick_tx;
  conn->tx_ev->data = conn;
}

static void
bgp_setup_sk(struct bgp_conn *conn, sock *s)
{
  s->data = conn;
  s->err_hook = bgp_sock_err;
  s->fast_rx = 1;
  conn->sk = s;
}

static void
bgp_active(struct bgp_proto *p)
{
  int delay = MAX(1, p->cf->connect_delay_time);
  struct bgp_conn *conn = &p->outgoing_conn;

  BGP_TRACE(D_EVENTS, "Connect delayed by %d seconds", delay);
  bgp_setup_conn(p, conn);
  bgp_conn_set_state(conn, BS_ACTIVE);
  bgp_start_timer(conn->connect_retry_timer, delay);
}

/**
 * bgp_connect - initiate an outgoing connection
 * @p: BGP instance
 *
 * The bgp_connect() function creates a new &bgp_conn and initiates
 * a TCP connection to the peer. The rest of connection setup is governed
 * by the BGP state machine as described in the standard.
 */
static void
bgp_connect(struct bgp_proto *p)	/* Enter Connect state and start establishing connection */
{
  sock *s;
  struct bgp_conn *conn = &p->outgoing_conn;
  int hops = p->cf->multihop ? : 1;

  DBG("BGP: Connecting\n");
  s = sk_new(p->p.pool);
  s->type = SK_TCP_ACTIVE;
  s->saddr = p->source_addr;
  s->daddr = p->cf->remote_ip;
  s->dport = p->cf->remote_port;
  s->iface = p->neigh ? p->neigh->iface : NULL;
  s->ttl = p->cf->ttl_security ? 255 : hops;
  s->rbsize = p->cf->enable_extended_messages ? BGP_RX_BUFFER_EXT_SIZE : BGP_RX_BUFFER_SIZE;
  s->tbsize = p->cf->enable_extended_messages ? BGP_TX_BUFFER_EXT_SIZE : BGP_TX_BUFFER_SIZE;
  s->tos = IP_PREC_INTERNET_CONTROL;
  s->password = p->cf->password;
  s->tx_hook = bgp_connected;
  BGP_TRACE(D_EVENTS, "Connecting to %I%J from local address %I%J", s->daddr, p->cf->iface,
	    s->saddr, ipa_is_link_local(s->saddr) ? s->iface : NULL);
  bgp_setup_conn(p, conn);
  bgp_setup_sk(conn, s);
  bgp_conn_set_state(conn, BS_CONNECT);

  if (sk_open(s) < 0)
    goto err;

  /* Set minimal receive TTL if needed */
  if (p->cf->ttl_security)
    if (sk_set_min_ttl(s, 256 - hops) < 0)
      goto err;

  DBG("BGP: Waiting for connect success\n");
  bgp_start_timer(conn->connect_retry_timer, p->cf->connect_retry_time);
  return;

 err:
  sk_log_error(s, p->p.name);
  bgp_sock_err(s, 0);
  return;
}

/**
 * bgp_find_proto - find existing proto for incoming connection
 * @sk: TCP socket
 *
 */
static struct bgp_proto *
bgp_find_proto(sock *sk)
{
  struct proto_config *pc;

  WALK_LIST(pc, config->protos)
    if ((pc->protocol == &proto_bgp) && pc->proto)
      {
	struct bgp_proto *p = (struct bgp_proto *) pc->proto;
	if (ipa_equal(p->cf->remote_ip, sk->daddr) &&
	    (!ipa_is_link_local(sk->daddr) || (p->cf->iface == sk->iface)))
	  return p;
      }

  return NULL;
}

/**
 * bgp_incoming_connection - handle an incoming connection
 * @sk: TCP socket
 * @dummy: unused
 *
 * This function serves as a socket hook for accepting of new BGP
 * connections. It searches a BGP instance corresponding to the peer
 * which has connected and if such an instance exists, it creates a
 * &bgp_conn structure, attaches it to the instance and either sends
 * an Open message or (if there already is an active connection) it
 * closes the new connection by sending a Notification message.
 */
static int
bgp_incoming_connection(sock *sk, int dummy UNUSED)
{
  struct bgp_proto *p;
  int acc, hops;

  DBG("BGP: Incoming connection from %I port %d\n", sk->daddr, sk->dport);
  p = bgp_find_proto(sk);
  if (!p)
    {
      log(L_WARN "BGP: Unexpected connect from unknown address %I%J (port %d)",
	  sk->daddr, ipa_is_link_local(sk->daddr) ? sk->iface : NULL, sk->dport);
      rfree(sk);
      return 0;
    }

  /*
   * BIRD should keep multiple incoming connections in OpenSent state (for
   * details RFC 4271 8.2.1 par 3), but it keeps just one. Duplicate incoming
   * connections are rejected istead. The exception is the case where an
   * incoming connection triggers a graceful restart.
   */

  acc = (p->p.proto_state == PS_START || p->p.proto_state == PS_UP) &&
    (p->start_state >= BSS_CONNECT) && (!p->incoming_conn.sk);

  if (p->conn && (p->conn->state == BS_ESTABLISHED) && p->gr_ready)
    {
      bgp_store_error(p, NULL, BE_MISC, BEM_GRACEFUL_RESTART);
      bgp_handle_graceful_restart(p);
      bgp_conn_enter_idle_state(p->conn);
      acc = 1;

      /* There might be separate incoming connection in OpenSent state */
      if (p->incoming_conn.state > BS_ACTIVE)
	bgp_close_conn(&p->incoming_conn);
    }

  BGP_TRACE(D_EVENTS, "Incoming connection from %I%J (port %d) %s",
	    sk->daddr, ipa_is_link_local(sk->daddr) ? sk->iface : NULL,
	    sk->dport, acc ? "accepted" : "rejected");

  if (!acc)
    {
      rfree(sk);
      return 0;
    }

  hops = p->cf->multihop ? : 1;

  if (sk_set_ttl(sk, p->cf->ttl_security ? 255 : hops) < 0)
    goto err;

  if (p->cf->ttl_security)
    if (sk_set_min_ttl(sk, 256 - hops) < 0)
      goto err;

  if (p->cf->enable_extended_messages)
    {
      sk->rbsize = BGP_RX_BUFFER_EXT_SIZE;
      sk->tbsize = BGP_TX_BUFFER_EXT_SIZE;
      sk_reallocate(sk);
    }

  bgp_setup_conn(p, &p->incoming_conn);
  bgp_setup_sk(&p->incoming_conn, sk);
  bgp_send_open(&p->incoming_conn);
  return 0;

err:
  sk_log_error(sk, p->p.name);
  log(L_ERR "%s: Incoming connection aborted", p->p.name);
  rfree(sk);
  return 0;
}

static void
bgp_listen_sock_err(sock *sk UNUSED, int err)
{
  if (err == ECONNABORTED)
    log(L_WARN "BGP: Incoming connection aborted");
  else
    log(L_ERR "BGP: Error on listening socket: %M", err);
}

static sock *
bgp_setup_listen_sk(ip_addr addr, unsigned port, u32 flags)
{
  sock *s = sk_new(&root_pool);
  DBG("BGP: Creating listening socket\n");
  s->type = SK_TCP_PASSIVE;
  s->ttl = 255;
  s->saddr = addr;
  s->sport = port ? port : BGP_PORT;
  s->flags = flags ? 0 : SKF_V6ONLY;
  s->tos = IP_PREC_INTERNET_CONTROL;
  s->rbsize = BGP_RX_BUFFER_SIZE;
  s->tbsize = BGP_TX_BUFFER_SIZE;
  s->rx_hook = bgp_incoming_connection;
  s->err_hook = bgp_listen_sock_err;

  if (sk_open(s) < 0)
    goto err;

  return s;

 err:
  sk_log_error(s, "BGP");
  log(L_ERR "BGP: Cannot open listening socket");
  rfree(s);
  return NULL;
}

static void
bgp_start_neighbor(struct bgp_proto *p)
{
  /* Called only for single-hop BGP sessions */

  if (ipa_zero(p->source_addr))
    p->source_addr = p->neigh->ifa->ip;

#ifdef IPV6
  {
    struct ifa *a;
    p->local_link = IPA_NONE;
    WALK_LIST(a, p->neigh->iface->addrs)
      if (a->scope == SCOPE_LINK)
        {
	  p->local_link = a->ip;
	  break;
	}

    if (! ipa_nonzero(p->local_link))
      log(L_WARN "%s: Missing link local address on interface %s", p->p.name,  p->neigh->iface->name);

    DBG("BGP: Selected link-level address %I\n", p->local_link);
  }
#endif

  bgp_initiate(p);
}

static void
bgp_neigh_notify(neighbor *n)
{
  struct bgp_proto *p = (struct bgp_proto *) n->proto;
  int ps = p->p.proto_state;

  if (n != p->neigh)
    return;

  if ((ps == PS_DOWN) || (ps == PS_STOP))
    return;

  int prepare = (ps == PS_START) && (p->start_state == BSS_PREPARE);

  if (n->scope <= 0)
    {
      if (!prepare)
        {
	  BGP_TRACE(D_EVENTS, "Neighbor lost");
	  bgp_store_error(p, NULL, BE_MISC, BEM_NEIGHBOR_LOST);
	  /* Perhaps also run bgp_update_startup_delay(p)? */
	  bgp_stop(p, 0);
	}
    }
  else if (p->cf->check_link && !(n->iface->flags & IF_LINK_UP))
    {
      if (!prepare)
        {
	  BGP_TRACE(D_EVENTS, "Link down");
	  bgp_store_error(p, NULL, BE_MISC, BEM_LINK_DOWN);
	  if (ps == PS_UP)
	    bgp_update_startup_delay(p);
	  bgp_stop(p, 0);
	}
    }
  else
    {
      if (prepare)
	{
	  BGP_TRACE(D_EVENTS, "Neighbor ready");
	  bgp_start_neighbor(p);
	}
    }
}

static void
bgp_bfd_notify(struct bfd_request *req)
{
  struct bgp_proto *p = req->data;
  int ps = p->p.proto_state;

  if (req->down && ((ps == PS_START) || (ps == PS_UP)))
    {
      BGP_TRACE(D_EVENTS, "BFD session down");
      bgp_store_error(p, NULL, BE_MISC, BEM_BFD_DOWN);
      if (ps == PS_UP)
	bgp_update_startup_delay(p);
      bgp_stop(p, 0);
    }
}

static void
bgp_update_bfd(struct bgp_proto *p, int use_bfd)
{
  if (use_bfd && !p->bfd_req)
    p->bfd_req = bfd_request_session(p->p.pool, p->cf->remote_ip, p->source_addr,
				     p->cf->multihop ? NULL : p->neigh->iface,
				     bgp_bfd_notify, p);

  if (!use_bfd && p->bfd_req)
    {
      rfree(p->bfd_req);
      p->bfd_req = NULL;
    }
}

static int
bgp_reload_routes(struct proto *P)
{
  struct bgp_proto *p = (struct bgp_proto *) P;
  if (!p->conn || !p->conn->peer_refresh_support)
    return 0;

  bgp_schedule_packet(p->conn, PKT_ROUTE_REFRESH);
  return 1;
}

static void
bgp_feed_begin(struct proto *P, int initial)
{
  struct bgp_proto *p = (struct bgp_proto *) P;

  /* This should not happen */
  if (!p->conn)
    return;

  if (initial && p->cf->gr_mode)
    p->feed_state = BFS_LOADING;

  /* It is refeed and both sides support enhanced route refresh */
  if (!initial && p->cf->enable_refresh &&
      p->conn->peer_enhanced_refresh_support)
    {
      /* BoRR must not be sent before End-of-RIB */
      if (p->feed_state == BFS_LOADING || p->feed_state == BFS_LOADED)
	return;

      p->feed_state = BFS_REFRESHING;
      bgp_schedule_packet(p->conn, PKT_BEGIN_REFRESH);
    }
}

static void
bgp_feed_end(struct proto *P)
{
  struct bgp_proto *p = (struct bgp_proto *) P;

  /* This should not happen */
  if (!p->conn)
    return;

  /* Non-demarcated feed ended, nothing to do */
  if (p->feed_state == BFS_NONE)
    return;

  /* Schedule End-of-RIB packet */
  if (p->feed_state == BFS_LOADING)
    p->feed_state = BFS_LOADED;

  /* Schedule EoRR packet */
  if (p->feed_state == BFS_REFRESHING)
    p->feed_state = BFS_REFRESHED;

  /* Kick TX hook */
  bgp_schedule_packet(p->conn, PKT_UPDATE);
}


static void
bgp_start_locked(struct object_lock *lock)
{
  struct bgp_proto *p = lock->data;
  struct bgp_config *cf = p->cf;

  if (p->p.proto_state != PS_START)
    {
      DBG("BGP: Got lock in different state %d\n", p->p.proto_state);
      return;
    }

  DBG("BGP: Got lock\n");

  if (cf->multihop)
    {
      /* Multi-hop sessions do not use neighbor entries */
      bgp_initiate(p);
      return;
    }

  neighbor *n = neigh_find2(&p->p, &cf->remote_ip, cf->iface, NEF_STICKY);
  if (!n)
    {
      log(L_ERR "%s: Invalid remote address %I%J", p->p.name, cf->remote_ip, cf->iface);
      /* As we do not start yet, we can just disable protocol */
      p->p.disabled = 1;
      bgp_store_error(p, NULL, BE_MISC, BEM_INVALID_NEXT_HOP);
      proto_notify_state(&p->p, PS_DOWN);
      return;
    }

  p->neigh = n;

  if (n->scope <= 0)
    BGP_TRACE(D_EVENTS, "Waiting for %I%J to become my neighbor", cf->remote_ip, cf->iface);
  else if (p->cf->check_link && !(n->iface->flags & IF_LINK_UP))
    BGP_TRACE(D_EVENTS, "Waiting for link on %s", n->iface->name);
  else
    bgp_start_neighbor(p);
}

static int
bgp_start(struct proto *P)
{
  struct bgp_proto *p = (struct bgp_proto *) P;
  struct object_lock *lock;

  DBG("BGP: Startup.\n");
  p->start_state = BSS_PREPARE;
  p->outgoing_conn.state = BS_IDLE;
  p->incoming_conn.state = BS_IDLE;
  p->neigh = NULL;
  p->bfd_req = NULL;
  p->gr_ready = 0;
  p->gr_active = 0;

  rt_lock_table(p->igp_table);

  p->event = ev_new(p->p.pool);
  p->event->hook = bgp_decision;
  p->event->data = p;

  p->startup_timer = tm_new(p->p.pool);
  p->startup_timer->hook = bgp_startup_timeout;
  p->startup_timer->data = p;

  p->gr_timer = tm_new(p->p.pool);
  p->gr_timer->hook = bgp_graceful_restart_timeout;
  p->gr_timer->data = p;

  p->local_id = proto_get_router_id(P->cf);
  if (p->rr_client)
    p->rr_cluster_id = p->cf->rr_cluster_id ? p->cf->rr_cluster_id : p->local_id;

  p->remote_id = 0;
  p->source_addr = p->cf->source_addr;

  if (p->p.gr_recovery && p->cf->gr_mode)
    proto_graceful_restart_lock(P);

  /*
   *  Before attempting to create the connection, we need to lock the
   *  port, so that are sure we're the only instance attempting to talk
   *  with that neighbor.
   */

  lock = p->lock = olock_new(P->pool);
  lock->addr = p->cf->remote_ip;
  lock->port = p->cf->remote_port;
  lock->iface = p->cf->iface;
  lock->type = OBJLOCK_TCP;
  lock->hook = bgp_start_locked;
  lock->data = p;
  olock_acquire(lock);

  return PS_START;
}

extern int proto_restart;

static int
bgp_shutdown(struct proto *P)
{
  struct bgp_proto *p = (struct bgp_proto *) P;
  unsigned subcode = 0;

  BGP_TRACE(D_EVENTS, "Shutdown requested");

  switch (P->down_code)
    {
    case PDC_CF_REMOVE:
    case PDC_CF_DISABLE:
      subcode = 3; // Errcode 6, 3 - peer de-configured
      break;

    case PDC_CF_RESTART:
      subcode = 6; // Errcode 6, 6 - other configuration change
      break;

    case PDC_CMD_DISABLE:
    case PDC_CMD_SHUTDOWN:
      subcode = 2; // Errcode 6, 2 - administrative shutdown
      break;

    case PDC_CMD_RESTART:
      subcode = 4; // Errcode 6, 4 - administrative reset
      break;

    case PDC_RX_LIMIT_HIT:
    case PDC_IN_LIMIT_HIT:
      subcode = 1; // Errcode 6, 1 - max number of prefixes reached
      /* log message for compatibility */
      log(L_WARN "%s: Route limit exceeded, shutting down", p->p.name);
      goto limit;

    case PDC_OUT_LIMIT_HIT:
      subcode = proto_restart ? 4 : 2; // Administrative reset or shutdown

    limit:
      bgp_store_error(p, NULL, BE_AUTO_DOWN, BEA_ROUTE_LIMIT_EXCEEDED);
      if (proto_restart)
	bgp_update_startup_delay(p);
      else
	p->startup_delay = 0;
      goto done;
    }

  bgp_store_error(p, NULL, BE_MAN_DOWN, 0);
  p->startup_delay = 0;

 done:
  bgp_stop(p, subcode);
  return p->p.proto_state;
}

static void
bgp_cleanup(struct proto *P)
{
  struct bgp_proto *p = (struct bgp_proto *) P;
  rt_unlock_table(p->igp_table);
}

static rtable *
get_igp_table(struct bgp_config *cf)
{
  return cf->igp_table ? cf->igp_table->table : cf->c.table->table;
}

static struct proto *
bgp_init(struct proto_config *C)
{
  struct proto *P = proto_new(C, sizeof(struct bgp_proto));
  struct bgp_config *c = (struct bgp_config *) C;
  struct bgp_proto *p = (struct bgp_proto *) P;

  P->accept_ra_types = c->secondary ? RA_ACCEPTED : RA_OPTIMAL;
  P->rt_notify = bgp_rt_notify;
  P->import_control = bgp_import_control;
  P->neigh_notify = bgp_neigh_notify;
  P->reload_routes = bgp_reload_routes;
  P->feed_begin = bgp_feed_begin;
  P->feed_end = bgp_feed_end;
  P->rte_better = bgp_rte_better;
  P->rte_mergable = bgp_rte_mergable;
  P->rte_recalculate = c->deterministic_med ? bgp_rte_recalculate : NULL;

  p->cf = c;
  p->local_as = c->local_as;
  p->remote_as = c->remote_as;
  p->is_internal = (c->local_as == c->remote_as);
  p->rs_client = c->rs_client;
  p->rr_client = c->rr_client;
  p->igp_table = get_igp_table(c);

  return P;
}


void
bgp_check_config(struct bgp_config *c)
{
  int internal = (c->local_as == c->remote_as);

  /* Do not check templates at all */
  if (c->c.class == SYM_TEMPLATE)
    return;


  /* EBGP direct by default, IBGP multihop by default */
  if (c->multihop < 0)
    c->multihop = internal ? 64 : 0;

  /* Different default for gw_mode */
  if (!c->gw_mode)
    c->gw_mode = c->multihop ? GW_RECURSIVE : GW_DIRECT;

  /* Different default based on rs_client */
  if (!c->missing_lladdr)
    c->missing_lladdr = c->rs_client ? MLL_IGNORE : MLL_SELF;

  /* Disable after error incompatible with restart limit action */
  if (c->c.in_limit && (c->c.in_limit->action == PLA_RESTART) && c->disable_after_error)
    c->c.in_limit->action = PLA_DISABLE;


  if (!c->local_as)
    cf_error("Local AS number must be set");

  if (ipa_zero(c->remote_ip))
    cf_error("Neighbor must be configured");

  if (!c->remote_as)
    cf_error("Remote AS number must be set");

  // if (ipa_is_link_local(c->remote_ip) && !c->iface)
  //   cf_error("Link-local neighbor address requires specified interface");

  if (!ipa_is_link_local(c->remote_ip) != !c->iface)
    cf_error("Link-local address and interface scope must be used together");

  if (!(c->capabilities && c->enable_as4) && (c->remote_as > 0xFFFF))
    cf_error("Neighbor AS number out of range (AS4 not available)");

  if (!internal && c->rr_client)
    cf_error("Only internal neighbor can be RR client");

  if (internal && c->rs_client)
    cf_error("Only external neighbor can be RS client");

  if (c->multihop && (c->gw_mode == GW_DIRECT))
    cf_error("Multihop BGP cannot use direct gateway mode");

  if (c->multihop && (ipa_is_link_local(c->remote_ip) ||
		      ipa_is_link_local(c->source_addr)))
    cf_error("Multihop BGP cannot be used with link-local addresses");

  if (c->multihop && c->check_link)
    cf_error("Multihop BGP cannot depend on link state");

  if (c->multihop && c->bfd && ipa_zero(c->source_addr))
    cf_error("Multihop BGP with BFD requires specified source address");

  if ((c->gw_mode == GW_RECURSIVE) && c->c.table->sorted)
    cf_error("BGP in recursive mode prohibits sorted table");

  if (c->deterministic_med && c->c.table->sorted)
    cf_error("BGP with deterministic MED prohibits sorted table");

  if (c->secondary && !c->c.table->sorted)
    cf_error("BGP with secondary option requires sorted table");
}

static int
bgp_reconfigure(struct proto *P, struct proto_config *C)
{
  struct bgp_config *new = (struct bgp_config *) C;
  struct bgp_proto *p = (struct bgp_proto *) P;
  struct bgp_config *old = p->cf;

  if (proto_get_router_id(C) != p->local_id)
    return 0;

  int same = !memcmp(((byte *) old) + sizeof(struct proto_config),
		     ((byte *) new) + sizeof(struct proto_config),
		     // password item is last and must be checked separately
		     OFFSETOF(struct bgp_config, password) - sizeof(struct proto_config))
    && ((!old->password && !new->password)
	|| (old->password && new->password && !strcmp(old->password, new->password)))
    && (get_igp_table(old) == get_igp_table(new));

  if (same && (p->start_state > BSS_PREPARE))
    bgp_update_bfd(p, new->bfd);

  /* We should update our copy of configuration ptr as old configuration will be freed */
  if (same)
    p->cf = new;

  return same;
}

static void
bgp_copy_config(struct proto_config *dest, struct proto_config *src)
{
  /* Just a shallow copy */
  proto_copy_rest(dest, src, sizeof(struct bgp_config));
}


/**
 * bgp_error - report a protocol error
 * @c: connection
 * @code: error code (according to the RFC)
 * @subcode: error sub-code
 * @data: data to be passed in the Notification message
 * @len: length of the data
 *
 * bgp_error() sends a notification packet to tell the other side that a protocol
 * error has occurred (including the data considered erroneous if possible) and
 * closes the connection.
 */
void
bgp_error(struct bgp_conn *c, unsigned code, unsigned subcode, byte *data, int len)
{
  struct bgp_proto *p = c->bgp;

  if (c->state == BS_CLOSE)
    return;

  bgp_log_error(p, BE_BGP_TX, "Error", code, subcode, data, (len > 0) ? len : -len);
  bgp_store_error(p, c, BE_BGP_TX, (code << 16) | subcode);
  bgp_conn_enter_close_state(c);

  c->notify_code = code;
  c->notify_subcode = subcode;
  c->notify_data = data;
  c->notify_size = (len > 0) ? len : 0;
  bgp_schedule_packet(c, PKT_NOTIFICATION);

  if (code != 6)
    {
      bgp_update_startup_delay(p);
      bgp_stop(p, 0);
    }
}

/**
 * bgp_store_error - store last error for status report
 * @p: BGP instance
 * @c: connection
 * @class: error class (BE_xxx constants)
 * @code: error code (class specific)
 *
 * bgp_store_error() decides whether given error is interesting enough
 * and store that error to last_error variables of @p
 */
void
bgp_store_error(struct bgp_proto *p, struct bgp_conn *c, u8 class, u32 code)
{
  /* During PS_UP, we ignore errors on secondary connection */
  if ((p->p.proto_state == PS_UP) && c && (c != p->conn))
    return;

  /* During PS_STOP, we ignore any errors, as we want to report
   * the error that caused transition to PS_STOP
   */
  if (p->p.proto_state == PS_STOP)
    return;

  p->last_error_class = class;
  p->last_error_code = code;
}

static char *bgp_state_names[] = { "Idle", "Connect", "Active", "OpenSent", "OpenConfirm", "Established", "Close" };
static char *bgp_err_classes[] = { "", "Error: ", "Socket: ", "Received: ", "BGP Error: ", "Automatic shutdown: ", ""};
static char *bgp_misc_errors[] = { "", "Neighbor lost", "Invalid next hop", "Kernel MD5 auth failed", "No listening socket", "Link down", "BFD session down", "Graceful restart"};
static char *bgp_auto_errors[] = { "", "Route limit exceeded"};

static const char *
bgp_last_errmsg(struct bgp_proto *p)
{
  switch (p->last_error_class)
    {
    case BE_MISC:
      return bgp_misc_errors[p->last_error_code];
    case BE_SOCKET:
      return (p->last_error_code == 0) ? "Connection closed" : strerror(p->last_error_code);
    case BE_BGP_RX:
    case BE_BGP_TX:
      return bgp_error_dsc(p->last_error_code >> 16, p->last_error_code & 0xFF);
    case BE_AUTO_DOWN:
      return bgp_auto_errors[p->last_error_code];
    default:
      return "";
    }
}

static const char *
bgp_state_dsc(struct bgp_proto *p)
{
  if (p->p.proto_state == PS_DOWN)
    return "Down";

  int state = MAX(p->incoming_conn.state, p->outgoing_conn.state);
  if ((state == BS_IDLE) && (p->start_state >= BSS_CONNECT) && p->cf->passive)
    return "Passive";

  return bgp_state_names[state];
}

static void
bgp_get_status(struct proto *P, byte *buf)
{
  struct bgp_proto *p = (struct bgp_proto *) P;

  const char *err1 = bgp_err_classes[p->last_error_class];
  const char *err2 = bgp_last_errmsg(p);

  if (P->proto_state == PS_DOWN)
    bsprintf(buf, "%s%s", err1, err2);
  else
    bsprintf(buf, "%-14s%s%s", bgp_state_dsc(p), err1, err2);
}

static void
bgp_show_proto_info(struct proto *P)
{
  struct bgp_proto *p = (struct bgp_proto *) P;
  struct bgp_conn *c = p->conn;

  proto_show_basic_info(P);

  cli_msg(-1006, "  BGP state:          %s", bgp_state_dsc(p));
  cli_msg(-1006, "    Neighbor address: %I%J", p->cf->remote_ip, p->cf->iface);
  cli_msg(-1006, "    Neighbor AS:      %u", p->remote_as);

  if (p->gr_active)
    cli_msg(-1006, "    Neighbor graceful restart active");

  if (P->proto_state == PS_START)
    {
      struct bgp_conn *oc = &p->outgoing_conn;

      if ((p->start_state < BSS_CONNECT) &&
	  (p->startup_timer->expires))
	cli_msg(-1006, "    Error wait:       %d/%d",
		p->startup_timer->expires - now, p->startup_delay);

      if ((oc->state == BS_ACTIVE) &&
	  (oc->connect_retry_timer->expires))
	cli_msg(-1006, "    Connect delay:    %d/%d",
		oc->connect_retry_timer->expires - now, p->cf->connect_delay_time);

      if (p->gr_active && p->gr_timer->expires)
	cli_msg(-1006, "    Restart timer:    %d/-", p->gr_timer->expires - now);
    }
  else if (P->proto_state == PS_UP)
    {
      cli_msg(-1006, "    Neighbor ID:      %R", p->remote_id);
      cli_msg(-1006, "    Neighbor caps:   %s%s%s%s%s%s%s",
	      c->peer_refresh_support ? " refresh" : "",
	      c->peer_enhanced_refresh_support ? " enhanced-refresh" : "",
	      c->peer_gr_able ? " restart-able" : (c->peer_gr_aware ? " restart-aware" : ""),
	      c->peer_as4_support ? " AS4" : "",
	      (c->peer_add_path & ADD_PATH_RX) ? " add-path-rx" : "",
	      (c->peer_add_path & ADD_PATH_TX) ? " add-path-tx" : "",
	      c->peer_ext_messages_support ? " ext-messages" : "");
      cli_msg(-1006, "    Session:          %s%s%s%s%s%s%s%s",
	      p->is_internal ? "internal" : "external",
	      p->cf->multihop ? " multihop" : "",
	      p->rr_client ? " route-reflector" : "",
	      p->rs_client ? " route-server" : "",
	      p->as4_session ? " AS4" : "",
	      p->add_path_rx ? " add-path-rx" : "",
	      p->add_path_tx ? " add-path-tx" : "",
	      p->ext_messages ? " ext-messages" : "");
      cli_msg(-1006, "    Source address:   %I", p->source_addr);
      if (P->cf->in_limit)
	cli_msg(-1006, "    Route limit:      %d/%d",
		p->p.stats.imp_routes + p->p.stats.filt_routes, P->cf->in_limit->limit);
      cli_msg(-1006, "    Hold timer:       %d/%d",
	      tm_remains(c->hold_timer), c->hold_time);
      cli_msg(-1006, "    Keepalive timer:  %d/%d",
	      tm_remains(c->keepalive_timer), c->keepalive_time);
    }

  if ((p->last_error_class != BE_NONE) &&
      (p->last_error_class != BE_MAN_DOWN))
    {
      const char *err1 = bgp_err_classes[p->last_error_class];
      const char *err2 = bgp_last_errmsg(p);
      cli_msg(-1006, "    Last error:       %s%s", err1, err2);
    }
}

struct protocol proto_bgp = {
  .name = 		"BGP",
  .template = 		"bgp%d",
  .attr_class = 	EAP_BGP,
  .preference = 	DEF_PREF_BGP,
  .config_size =	sizeof(struct bgp_config),
  .init = 		bgp_init,
  .start = 		bgp_start,
  .shutdown = 		bgp_shutdown,
  .cleanup = 		bgp_cleanup,
  .reconfigure = 	bgp_reconfigure,
  .copy_config = 	bgp_copy_config,
  .get_status = 	bgp_get_status,
  .get_attr = 		bgp_get_attr,
  .get_route_info = 	bgp_get_route_info,
  .show_proto_info = 	bgp_show_proto_info
};