/* * BIRD -- Forwarding Information Base -- Data Structures * * (c) 1998--2000 Martin Mares <mj@ucw.cz> * * Can be freely distributed and used under the terms of the GNU GPL. */ /** * DOC: Forwarding Information Base * * FIB is a data structure designed for storage of routes indexed by their * network prefixes. It supports insertion, deletion, searching by prefix, * `routing' (in CIDR sense, that is searching for a longest prefix matching * a given IP address) and (which makes the structure very tricky to implement) * asynchronous reading, that is enumerating the contents of a FIB while other * modules add, modify or remove entries. * * Internally, each FIB is represented as a collection of nodes of type &fib_node * indexed using a sophisticated hashing mechanism. * We use two-stage hashing where we calculate a 16-bit primary hash key independent * on hash table size and then we just divide the primary keys modulo table size * to get a real hash key used for determining the bucket containing the node. * The lists of nodes in each buckets are sorted according to the primary hash * key, hence if we keep the total number of buckets to be a power of two, * re-hashing of the structure keeps the relative order of the nodes. * * To get the asynchronous reading consistent over node deletions, we need to * keep a list of readers for each node. When a node gets deleted, its readers * are automatically moved to the next node in the table. * * Basic FIB operations are performed by functions defined by this module, * enumerating of FIB contents is accomplished by using the FIB_WALK() macro * or FIB_ITERATE_START() if you want to do it asynchronously. */ #undef LOCAL_DEBUG #include "nest/bird.h" #include "nest/route.h" #include "lib/string.h" #define HASH_DEF_ORDER 10 #define HASH_HI_MARK *4 #define HASH_HI_STEP 2 #define HASH_HI_MAX 16 /* Must be at most 16 */ #define HASH_LO_MARK /5 #define HASH_LO_STEP 2 #define HASH_LO_MIN 10 static void fib_ht_alloc(struct fib *f) { f->hash_size = 1 << f->hash_order; f->hash_shift = 16 - f->hash_order; if (f->hash_order > HASH_HI_MAX - HASH_HI_STEP) f->entries_max = ~0; else f->entries_max = f->hash_size HASH_HI_MARK; if (f->hash_order < HASH_LO_MIN + HASH_LO_STEP) f->entries_min = 0; else f->entries_min = f->hash_size HASH_LO_MARK; DBG("Allocating FIB hash of order %d: %d entries, %d low, %d high\n", f->hash_order, f->hash_size, f->entries_min, f->entries_max); f->hash_table = mb_alloc(f->fib_pool, f->hash_size * sizeof(struct fib_node *)); } static inline void fib_ht_free(struct fib_node **h) { mb_free(h); } static inline unsigned fib_hash(struct fib *f, ip_addr *a) { return ipa_hash(*a) >> f->hash_shift; } static void fib_dummy_init(struct fib_node *dummy) { } /** * fib_init - initialize a new FIB * @f: the FIB to be initialized (the structure itself being allocated by the caller) * @p: pool to allocate the nodes in * @node_size: node size to be used (each node consists of a standard header &fib_node * followed by user data) * @hash_order: initial hash order (a binary logarithm of hash table size), 0 to use default order * (recommended) * @init: pointer a function to be called to initialize a newly created node * * This function initializes a newly allocated FIB and prepares it for use. */ void fib_init(struct fib *f, pool *p, unsigned node_size, unsigned hash_order, fib_init_func init) { if (!hash_order) hash_order = HASH_DEF_ORDER; f->fib_pool = p; f->fib_slab = sl_new(p, node_size); f->hash_order = hash_order; fib_ht_alloc(f); bzero(f->hash_table, f->hash_size * sizeof(struct fib_node *)); f->entries = 0; f->entries_min = 0; f->init = init ? : fib_dummy_init; } static void fib_rehash(struct fib *f, int step) { unsigned old, new, oldn, newn, ni, nh; struct fib_node **n, *e, *x, **t, **m, **h; old = f->hash_order; oldn = f->hash_size; new = old + step; m = h = f->hash_table; DBG("Re-hashing FIB from order %d to %d\n", old, new); f->hash_order = new; fib_ht_alloc(f); t = n = f->hash_table; newn = f->hash_size; ni = 0; while (oldn--) { x = *h++; while (e = x) { x = e->next; nh = fib_hash(f, &e->prefix); while (nh > ni) { *t = NULL; ni++; t = ++n; } *t = e; t = &e->next; } } while (ni < newn) { *t = NULL; ni++; t = ++n; } fib_ht_free(m); } /** * fib_find - search for FIB node by prefix * @f: FIB to search in * @a: pointer to IP address of the prefix * @len: prefix length * * Search for a FIB node corresponding to the given prefix, return * a pointer to it or %NULL if no such node exists. */ void * fib_find(struct fib *f, ip_addr *a, int len) { struct fib_node *e = f->hash_table[fib_hash(f, a)]; while (e && (e->pxlen != len || !ipa_equal(*a, e->prefix))) e = e->next; return e; } /** * fib_get - find or create a FIB node * @f: FIB to work with * @a: pointer to IP address of the prefix * @len: prefix length * * Search for a FIB node corresponding to the given prefix and * return a pointer to it. If no such node exists, create it. */ void * fib_get(struct fib *f, ip_addr *a, int len) { unsigned int h = ipa_hash(*a); struct fib_node **ee = f->hash_table + (h >> f->hash_shift); struct fib_node *g, *e = *ee; while (e && (e->pxlen != len || !ipa_equal(*a, e->prefix))) e = e->next; if (e) return e; #ifdef DEBUGGING if (len < 0 || len > BITS_PER_IP_ADDRESS || !ip_is_prefix(*a,len)) bug("fib_get() called for invalid address"); #endif e = sl_alloc(f->fib_slab); e->prefix = *a; e->pxlen = len; while ((g = *ee) && ipa_hash(g->prefix) < h) ee = &g->next; e->next = *ee; *ee = e; e->readers = NULL; f->init(e); if (f->entries++ > f->entries_max) fib_rehash(f, HASH_HI_STEP); return e; } /** * fib_route - CIDR routing lookup * @f: FIB to search in * @a: pointer to IP address of the prefix * @len: prefix length * * Search for a FIB node with longest prefix matching the given * network, that is a node which a CIDR router would use for routing * that network. */ void * fib_route(struct fib *f, ip_addr a, int len) { ip_addr a0; void *t; while (len >= 0) { a0 = ipa_and(a, ipa_mkmask(len)); t = fib_find(f, &a0, len); if (t) return t; len--; } return NULL; } static inline void fib_merge_readers(struct fib_iterator *i, struct fib_node *to) { if (to) { struct fib_iterator *j = to->readers; if (!j) { /* Fast path */ to->readers = i; i->prev = (struct fib_iterator *) to; } else { /* Really merging */ while (j->next) j = j->next; j->next = i; i->prev = j; } while (i && i->node) { i->node = NULL; i = i->next; } } else /* No more nodes */ while (i) { i->prev = NULL; i = i->next; } } /** * fib_delete - delete a FIB node * @f: FIB to delete from * @E: entry to delete * * This function removes the given entry from the FIB, * taking care of all the asynchronous readers by shifting * them to the next node in the canonical reading order. */ void fib_delete(struct fib *f, void *E) { struct fib_node *e = E; unsigned int h = fib_hash(f, &e->prefix); struct fib_node **ee = f->hash_table + h; struct fib_iterator *it; while (*ee) { if (*ee == e) { *ee = e->next; if (it = e->readers) { struct fib_node *l = e->next; while (!l) { h++; if (h >= f->hash_size) break; else l = f->hash_table[h]; } fib_merge_readers(it, l); } sl_free(f->fib_slab, e); if (f->entries-- < f->entries_min) fib_rehash(f, -HASH_LO_STEP); return; } ee = &((*ee)->next); } bug("fib_delete() called for invalid node"); } /** * fib_free - delete a FIB * @f: FIB to be deleted * * This function deletes a FIB -- it frees all memory associated * with it and all its entries. */ void fib_free(struct fib *f) { fib_ht_free(f->hash_table); rfree(f->fib_slab); } void fit_init(struct fib_iterator *i, struct fib *f) { unsigned h; struct fib_node *n; i->efef = 0xff; for(h=0; h<f->hash_size; h++) if (n = f->hash_table[h]) { i->prev = (struct fib_iterator *) n; if (i->next = n->readers) i->next->prev = i; n->readers = i; i->node = n; return; } /* The fib is empty, nothing to do */ i->prev = i->next = NULL; i->node = NULL; } struct fib_node * fit_get(struct fib *f, struct fib_iterator *i) { struct fib_node *n; struct fib_iterator *j, *k; if (!i->prev) { /* We are at the end */ i->hash = ~0 - 1; return NULL; } if (!(n = i->node)) { /* No node info available, we are a victim of merging. Try harder. */ j = i; while (j->efef == 0xff) j = j->prev; n = (struct fib_node *) j; } j = i->prev; if (k = i->next) k->prev = j; j->next = k; i->hash = fib_hash(f, &n->prefix); return n; } void fit_put(struct fib_iterator *i, struct fib_node *n) { struct fib_iterator *j; i->node = n; if (j = n->readers) j->prev = i; i->next = j; n->readers = i; i->prev = (struct fib_iterator *) n; } #ifdef DEBUGGING /** * fib_check - audit a FIB * @f: FIB to be checked * * This debugging function audits a FIB by checking its internal consistency. * Use when you suspect somebody from corrupting innocent data structures. */ void fib_check(struct fib *f) { unsigned int i, ec, lo, nulls; ec = 0; for(i=0; i<f->hash_size; i++) { struct fib_node *n; lo = 0; for(n=f->hash_table[i]; n; n=n->next) { struct fib_iterator *j, *j0; unsigned int h0 = ipa_hash(n->prefix); if (h0 < lo) bug("fib_check: discord in hash chains"); lo = h0; if ((h0 >> f->hash_shift) != i) bug("fib_check: mishashed %x->%x (order %d)", h0, i, f->hash_order); j0 = (struct fib_iterator *) n; nulls = 0; for(j=n->readers; j; j=j->next) { if (j->prev != j0) bug("fib_check: iterator->prev mismatch"); j0 = j; if (!j->node) nulls++; else if (nulls) bug("fib_check: iterator nullified"); else if (j->node != n) bug("fib_check: iterator->node mismatch"); } ec++; } } if (ec != f->entries) bug("fib_check: invalid entry count (%d != %d)", ec, f->entries); } #endif #ifdef TEST #include "lib/resource.h" struct fib f; void dump(char *m) { unsigned int i; debug("%s ... order=%d, size=%d, entries=%d\n", m, f.hash_order, f.hash_size, f.hash_size); for(i=0; i<f.hash_size; i++) { struct fib_node *n; struct fib_iterator *j; for(n=f.hash_table[i]; n; n=n->next) { debug("%04x %04x %p %I/%2d", i, ipa_hash(n->prefix), n, n->prefix, n->pxlen); for(j=n->readers; j; j=j->next) debug(" %p[%p]", j, j->node); debug("\n"); } } fib_check(&f); debug("-----\n"); } void init(struct fib_node *n) { } int main(void) { struct fib_node *n; struct fib_iterator i, j; ip_addr a; int c; log_init_debug(NULL); resource_init(); fib_init(&f, &root_pool, sizeof(struct fib_node), 4, init); dump("init"); a = ipa_from_u32(0x01020304); n = fib_get(&f, &a, 32); a = ipa_from_u32(0x02030405); n = fib_get(&f, &a, 32); a = ipa_from_u32(0x03040506); n = fib_get(&f, &a, 32); a = ipa_from_u32(0x00000000); n = fib_get(&f, &a, 32); a = ipa_from_u32(0x00000c01); n = fib_get(&f, &a, 32); a = ipa_from_u32(0xffffffff); n = fib_get(&f, &a, 32); dump("fill"); fit_init(&i, &f); dump("iter init"); fib_rehash(&f, 1); dump("rehash up"); fib_rehash(&f, -1); dump("rehash down"); next: c = 0; FIB_ITERATE_START(&f, &i, z) { if (c) { FIB_ITERATE_PUT(&i, z); dump("iter"); goto next; } c = 1; debug("got %p\n", z); } FIB_ITERATE_END; dump("iter end"); fit_init(&i, &f); fit_init(&j, &f); dump("iter init 2"); n = fit_get(&f, &i); dump("iter step 2"); fit_put(&i, n->next); dump("iter step 3"); a = ipa_from_u32(0xffffffff); n = fib_get(&f, &a, 32); fib_delete(&f, n); dump("iter step 3"); return 0; } #endif