/* * BIRD Internet Routing Daemon -- Command-Line Interface * * (c) 1999--2000 Martin Mares <mj@ucw.cz> * * Can be freely distributed and used under the terms of the GNU GPL. */ /** * DOC: Command line interface * * This module takes care of the BIRD's command-line interface (CLI). * The CLI exists to provide a way to control BIRD remotely and to inspect * its status. It uses a very simple textual protocol over a stream * connection provided by the platform dependent code (on UNIX systems, * it's a UNIX domain socket). * * Each session of the CLI consists of a sequence of request and replies, * slightly resembling the FTP and SMTP protocols. * Requests are commands encoded as a single line of text, replies are * sequences of lines starting with a four-digit code followed by either * a space (if it's the last line of the reply) or a minus sign (when the * reply is going to continue with the next line), the rest of the line * contains a textual message semantics of which depends on the numeric * code. If a reply line has the same code as the previous one and it's * a continuation line, the whole prefix can be replaced by a single * white space character. * * Reply codes starting with 0 stand for `action successfully completed' messages, * 1 means `table entry', 8 `runtime error' and 9 `syntax error'. * * Each CLI session is internally represented by a &cli structure and a * resource pool containing all resources associated with the connection, * so that it can be easily freed whenever the connection gets closed, not depending * on the current state of command processing. * * The CLI commands are declared as a part of the configuration grammar * by using the |CF_CLI| macro. When a command is received, it is processed * by the same lexical analyzer and parser as used for the configuration, but * it's switched to a special mode by prepending a fake token to the text, * so that it uses only the CLI command rules. Then the parser invokes * an execution routine corresponding to the command, which either constructs * the whole reply and returns it back or (in case it expects the reply will be long) * it prints a partial reply and asks the CLI module (using the @cont hook) * to call it again when the output is transferred to the user. * * The @this_cli variable points to a &cli structure of the session being * currently parsed, but it's of course available only in command handlers * not entered using the @cont hook. * * TX buffer management works as follows: At cli.tx_buf there is a * list of TX buffers (struct cli_out), cli.tx_write is the buffer * currently used by the producer (cli_printf(), cli_alloc_out()) and * cli.tx_pos is the buffer currently used by the consumer * (cli_write(), in system dependent code). The producer uses * cli_out.wpos ptr as the current write position and the consumer * uses cli_out.outpos ptr as the current read position. When the * producer produces something, it calls cli_write_trigger(). If there * is not enough space in the current buffer, the producer allocates * the new one. When the consumer processes everything in the buffer * queue, it calls cli_written(), tha frees all buffers (except the * first one) and schedules cli.event . * */ #include "nest/bird.h" #include "nest/cli.h" #include "conf/conf.h" #include "lib/string.h" pool *cli_pool; static byte * cli_alloc_out(cli *c, int size) { struct cli_out *o; if (!(o = c->tx_write) || o->wpos + size > o->end) { if (!o && c->tx_buf) o = c->tx_buf; else { o = mb_alloc(c->pool, sizeof(struct cli_out) + CLI_TX_BUF_SIZE); if (c->tx_write) c->tx_write->next = o; else c->tx_buf = o; o->wpos = o->outpos = o->buf; o->end = o->buf + CLI_TX_BUF_SIZE; } c->tx_write = o; if (!c->tx_pos) c->tx_pos = o; o->next = NULL; } o->wpos += size; return o->wpos - size; } /** * cli_printf - send reply to a CLI connection * @c: CLI connection * @code: numeric code of the reply, negative for continuation lines * @msg: a printf()-like formatting string. * * This function send a single line of reply to a given CLI connection. * In works in all aspects like bsprintf() except that it automatically * prepends the reply line prefix. * * Please note that if the connection can be already busy sending some * data in which case cli_printf() stores the output to a temporary buffer, * so please avoid sending a large batch of replies without waiting * for the buffers to be flushed. * * If you want to write to the current CLI output, you can use the cli_msg() * macro instead. */ void cli_printf(cli *c, int code, char *msg, ...) { va_list args; byte buf[1024]; int cd = code; int size, cnt; if (cd < 0) { cd = -cd; if (cd == c->last_reply) size = bsprintf(buf, " "); else size = bsprintf(buf, "%04d-", cd); } else size = bsprintf(buf, "%04d ", cd); c->last_reply = cd; va_start(args, msg); cnt = bvsnprintf(buf+size, sizeof(buf)-size-1, msg, args); va_end(args); if (cnt < 0) { cli_printf(c, code < 0 ? -8000 : 8000, "<line overflow>"); return; } size += cnt; buf[size++] = '\n'; memcpy(cli_alloc_out(c, size), buf, size); } static void cli_copy_message(cli *c) { byte *p, *q; unsigned int cnt = 2; if (c->ring_overflow) { byte buf[64]; int n = bsprintf(buf, "<%d messages lost>\n", c->ring_overflow); c->ring_overflow = 0; memcpy(cli_alloc_out(c, n), buf, n); } p = c->ring_read; while (*p) { cnt++; p++; if (p == c->ring_end) p = c->ring_buf; ASSERT(p != c->ring_write); } c->async_msg_size += cnt; q = cli_alloc_out(c, cnt); *q++ = '+'; p = c->ring_read; do { *q = *p++; if (p == c->ring_end) p = c->ring_buf; } while (*q++); c->ring_read = p; q[-1] = '\n'; } static void cli_hello(cli *c) { cli_printf(c, 1, "BIRD " BIRD_VERSION " ready."); c->cont = NULL; } static void cli_free_out(cli *c) { struct cli_out *o, *p; if (o = c->tx_buf) { o->wpos = o->outpos = o->buf; while (p = o->next) { o->next = p->next; mb_free(p); } } c->tx_write = c->tx_pos = NULL; c->async_msg_size = 0; } void cli_written(cli *c) { cli_free_out(c); ev_schedule(c->event); } static byte *cli_rh_pos; static unsigned int cli_rh_len; static int cli_rh_trick_flag; struct cli *this_cli; static int cli_cmd_read_hook(byte *buf, unsigned int max) { if (!cli_rh_trick_flag) { cli_rh_trick_flag = 1; buf[0] = '!'; return 1; } if (max > cli_rh_len) max = cli_rh_len; memcpy(buf, cli_rh_pos, max); cli_rh_pos += max; cli_rh_len -= max; return max; } static void cli_command(struct cli *c) { struct config f; int res; if (config->cli_debug > 1) log(L_TRACE "CLI: %s", c->rx_buf); bzero(&f, sizeof(f)); f.mem = c->parser_pool; cf_read_hook = cli_cmd_read_hook; cli_rh_pos = c->rx_buf; cli_rh_len = strlen(c->rx_buf); cli_rh_trick_flag = 0; this_cli = c; lp_flush(c->parser_pool); res = cli_parse(&f); if (!res) cli_printf(c, 9001, f.err_msg); } static void cli_event(void *data) { cli *c = data; int err; while (c->ring_read != c->ring_write && c->async_msg_size < CLI_MAX_ASYNC_QUEUE) cli_copy_message(c); if (c->tx_pos) ; else if (c->cont) c->cont(c); else { err = cli_get_command(c); if (!err) return; if (err < 0) cli_printf(c, 9000, "Command too long"); else cli_command(c); } cli_write_trigger(c); } cli * cli_new(void *priv) { pool *p = rp_new(cli_pool, "CLI"); cli *c = mb_alloc(p, sizeof(cli)); bzero(c, sizeof(cli)); c->pool = p; c->priv = priv; c->event = ev_new(p); c->event->hook = cli_event; c->event->data = c; c->cont = cli_hello; c->parser_pool = lp_new(c->pool, 4096); c->rx_buf = mb_alloc(c->pool, CLI_RX_BUF_SIZE); ev_schedule(c->event); return c; } void cli_kick(cli *c) { if (!c->cont && !c->tx_pos) ev_schedule(c->event); } static list cli_log_hooks; static int cli_log_inited; void cli_set_log_echo(cli *c, unsigned int mask, unsigned int size) { if (c->ring_buf) { mb_free(c->ring_buf); c->ring_buf = c->ring_end = c->ring_read = c->ring_write = NULL; rem_node(&c->n); } c->log_mask = mask; if (mask && size) { c->ring_buf = mb_alloc(c->pool, size); c->ring_end = c->ring_buf + size; c->ring_read = c->ring_write = c->ring_buf; add_tail(&cli_log_hooks, &c->n); c->log_threshold = size / 8; } c->ring_overflow = 0; } void cli_echo(unsigned int class, byte *msg) { unsigned len, free, i, l; cli *c; byte *m; if (!cli_log_inited || EMPTY_LIST(cli_log_hooks)) return; len = strlen(msg) + 1; WALK_LIST(c, cli_log_hooks) { if (!(c->log_mask & (1 << class))) continue; if (c->ring_read <= c->ring_write) free = (c->ring_end - c->ring_buf) - (c->ring_write - c->ring_read + 1); else free = c->ring_read - c->ring_write - 1; if ((len > free) || (free < c->log_threshold && class < (unsigned) L_INFO[0])) { c->ring_overflow++; continue; } if (c->ring_read == c->ring_write) ev_schedule(c->event); m = msg; l = len; while (l) { if (c->ring_read <= c->ring_write) i = c->ring_end - c->ring_write; else i = c->ring_read - c->ring_write; if (i > l) i = l; memcpy(c->ring_write, m, i); m += i; l -= i; c->ring_write += i; if (c->ring_write == c->ring_end) c->ring_write = c->ring_buf; } } } void cli_free(cli *c) { cli_set_log_echo(c, 0, 0); if (c->cleanup) c->cleanup(c); rfree(c->pool); } /** * cli_init - initialize the CLI module * * This function is called during BIRD startup to initialize * the internal data structures of the CLI module. */ void cli_init(void) { cli_pool = rp_new(&root_pool, "CLI"); init_list(&cli_log_hooks); cli_log_inited = 1; }