/* * BIRD Library -- SHA-1 Hash Function (FIPS 180-1, RFC 3174) * * (c) 2015 CZ.NIC z.s.p.o. * * Based on the code from libucw-6.4 * (c) 2008--2009 Martin Mares <mj@ucw.cz> * * Based on the code from libgcrypt-1.2.3, which is * (c) 1998, 2001, 2002, 2003 Free Software Foundation, Inc. * * Can be freely distributed and used under the terms of the GNU GPL. */ #include "lib/sha1.h" #include "lib/unaligned.h" void sha1_init(struct hash_context *CTX) { struct sha1_context *ctx = (void *) CTX; ctx->h0 = 0x67452301; ctx->h1 = 0xefcdab89; ctx->h2 = 0x98badcfe; ctx->h3 = 0x10325476; ctx->h4 = 0xc3d2e1f0; ctx->nblocks = 0; ctx->count = 0; } /* * Transform the message X which consists of 16 32-bit-words */ static void sha1_transform(struct sha1_context *ctx, const byte *data) { u32 a,b,c,d,e,tm; u32 x[16]; /* Get values from the chaining vars. */ a = ctx->h0; b = ctx->h1; c = ctx->h2; d = ctx->h3; e = ctx->h4; #ifdef CPU_BIG_ENDIAN memcpy(x, data, 64); #else int i; for (i = 0; i < 16; i++) x[i] = get_u32(data+4*i); #endif #define K1 0x5A827999L #define K2 0x6ED9EBA1L #define K3 0x8F1BBCDCL #define K4 0xCA62C1D6L #define F1(x,y,z) ( z ^ ( x & ( y ^ z ) ) ) #define F2(x,y,z) ( x ^ y ^ z ) #define F3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) ) #define F4(x,y,z) ( x ^ y ^ z ) #define M(i) (tm = x[i&0x0f] ^ x[(i-14)&0x0f] ^ x[(i-8)&0x0f] ^ x[(i-3)&0x0f], (x[i&0x0f] = ROL(tm, 1))) /* Bitwise rotation of an unsigned int to the left **/ #define ROL(x, bits) (((x) << (bits)) | ((uint)(x) >> (sizeof(uint)*8 - (bits)))) #define R(a, b, c, d, e, f, k, m) \ do \ { \ e += ROL(a, 5) + f(b, c, d) + k + m; \ b = ROL(b, 30); \ } while(0) R( a, b, c, d, e, F1, K1, x[ 0] ); R( e, a, b, c, d, F1, K1, x[ 1] ); R( d, e, a, b, c, F1, K1, x[ 2] ); R( c, d, e, a, b, F1, K1, x[ 3] ); R( b, c, d, e, a, F1, K1, x[ 4] ); R( a, b, c, d, e, F1, K1, x[ 5] ); R( e, a, b, c, d, F1, K1, x[ 6] ); R( d, e, a, b, c, F1, K1, x[ 7] ); R( c, d, e, a, b, F1, K1, x[ 8] ); R( b, c, d, e, a, F1, K1, x[ 9] ); R( a, b, c, d, e, F1, K1, x[10] ); R( e, a, b, c, d, F1, K1, x[11] ); R( d, e, a, b, c, F1, K1, x[12] ); R( c, d, e, a, b, F1, K1, x[13] ); R( b, c, d, e, a, F1, K1, x[14] ); R( a, b, c, d, e, F1, K1, x[15] ); R( e, a, b, c, d, F1, K1, M(16) ); R( d, e, a, b, c, F1, K1, M(17) ); R( c, d, e, a, b, F1, K1, M(18) ); R( b, c, d, e, a, F1, K1, M(19) ); R( a, b, c, d, e, F2, K2, M(20) ); R( e, a, b, c, d, F2, K2, M(21) ); R( d, e, a, b, c, F2, K2, M(22) ); R( c, d, e, a, b, F2, K2, M(23) ); R( b, c, d, e, a, F2, K2, M(24) ); R( a, b, c, d, e, F2, K2, M(25) ); R( e, a, b, c, d, F2, K2, M(26) ); R( d, e, a, b, c, F2, K2, M(27) ); R( c, d, e, a, b, F2, K2, M(28) ); R( b, c, d, e, a, F2, K2, M(29) ); R( a, b, c, d, e, F2, K2, M(30) ); R( e, a, b, c, d, F2, K2, M(31) ); R( d, e, a, b, c, F2, K2, M(32) ); R( c, d, e, a, b, F2, K2, M(33) ); R( b, c, d, e, a, F2, K2, M(34) ); R( a, b, c, d, e, F2, K2, M(35) ); R( e, a, b, c, d, F2, K2, M(36) ); R( d, e, a, b, c, F2, K2, M(37) ); R( c, d, e, a, b, F2, K2, M(38) ); R( b, c, d, e, a, F2, K2, M(39) ); R( a, b, c, d, e, F3, K3, M(40) ); R( e, a, b, c, d, F3, K3, M(41) ); R( d, e, a, b, c, F3, K3, M(42) ); R( c, d, e, a, b, F3, K3, M(43) ); R( b, c, d, e, a, F3, K3, M(44) ); R( a, b, c, d, e, F3, K3, M(45) ); R( e, a, b, c, d, F3, K3, M(46) ); R( d, e, a, b, c, F3, K3, M(47) ); R( c, d, e, a, b, F3, K3, M(48) ); R( b, c, d, e, a, F3, K3, M(49) ); R( a, b, c, d, e, F3, K3, M(50) ); R( e, a, b, c, d, F3, K3, M(51) ); R( d, e, a, b, c, F3, K3, M(52) ); R( c, d, e, a, b, F3, K3, M(53) ); R( b, c, d, e, a, F3, K3, M(54) ); R( a, b, c, d, e, F3, K3, M(55) ); R( e, a, b, c, d, F3, K3, M(56) ); R( d, e, a, b, c, F3, K3, M(57) ); R( c, d, e, a, b, F3, K3, M(58) ); R( b, c, d, e, a, F3, K3, M(59) ); R( a, b, c, d, e, F4, K4, M(60) ); R( e, a, b, c, d, F4, K4, M(61) ); R( d, e, a, b, c, F4, K4, M(62) ); R( c, d, e, a, b, F4, K4, M(63) ); R( b, c, d, e, a, F4, K4, M(64) ); R( a, b, c, d, e, F4, K4, M(65) ); R( e, a, b, c, d, F4, K4, M(66) ); R( d, e, a, b, c, F4, K4, M(67) ); R( c, d, e, a, b, F4, K4, M(68) ); R( b, c, d, e, a, F4, K4, M(69) ); R( a, b, c, d, e, F4, K4, M(70) ); R( e, a, b, c, d, F4, K4, M(71) ); R( d, e, a, b, c, F4, K4, M(72) ); R( c, d, e, a, b, F4, K4, M(73) ); R( b, c, d, e, a, F4, K4, M(74) ); R( a, b, c, d, e, F4, K4, M(75) ); R( e, a, b, c, d, F4, K4, M(76) ); R( d, e, a, b, c, F4, K4, M(77) ); R( c, d, e, a, b, F4, K4, M(78) ); R( b, c, d, e, a, F4, K4, M(79) ); /* Update chaining vars. */ ctx->h0 += a; ctx->h1 += b; ctx->h2 += c; ctx->h3 += d; ctx->h4 += e; } /* * Update the message digest with the contents of BUF with length LEN. */ void sha1_update(struct hash_context *CTX, const byte *buf, uint len) { struct sha1_context *ctx = (void *) CTX; if (ctx->count) { /* Fill rest of internal buffer */ for (; len && ctx->count < SHA1_BLOCK_SIZE; len--) ctx->buf[ctx->count++] = *buf++; if (ctx->count < SHA1_BLOCK_SIZE) return; /* Process data from internal buffer */ sha1_transform(ctx, ctx->buf); ctx->nblocks++; ctx->count = 0; } if (!len) return; /* Process data from input buffer */ while (len >= SHA1_BLOCK_SIZE) { sha1_transform(ctx, buf); ctx->nblocks++; buf += SHA1_BLOCK_SIZE; len -= SHA1_BLOCK_SIZE; } /* Copy remaining data to internal buffer */ memcpy(ctx->buf, buf, len); ctx->count = len; } /* * The routine final terminates the computation and returns the digest. The * handle is prepared for a new cycle, but adding bytes to the handle will the * destroy the returned buffer. * * Returns: 20 bytes representing the digest. */ byte * sha1_final(struct hash_context *CTX) { struct sha1_context *ctx = (void *) CTX; u32 t, msb, lsb; sha1_update(CTX, NULL, 0); /* flush */ t = ctx->nblocks; /* multiply by 64 to make a byte count */ lsb = t << 6; msb = t >> 26; /* add the count */ t = lsb; if ((lsb += ctx->count) < t) msb++; /* multiply by 8 to make a bit count */ t = lsb; lsb <<= 3; msb <<= 3; msb |= t >> 29; if (ctx->count < 56) { /* enough room */ ctx->buf[ctx->count++] = 0x80; /* pad */ while (ctx->count < 56) ctx->buf[ctx->count++] = 0; /* pad */ } else { /* need one extra block */ ctx->buf[ctx->count++] = 0x80; /* pad character */ while (ctx->count < 64) ctx->buf[ctx->count++] = 0; sha1_update(CTX, NULL, 0); /* flush */ memset(ctx->buf, 0, 56); /* fill next block with zeroes */ } /* append the 64 bit count */ ctx->buf[56] = msb >> 24; ctx->buf[57] = msb >> 16; ctx->buf[58] = msb >> 8; ctx->buf[59] = msb; ctx->buf[60] = lsb >> 24; ctx->buf[61] = lsb >> 16; ctx->buf[62] = lsb >> 8; ctx->buf[63] = lsb; sha1_transform(ctx, ctx->buf); byte *p = ctx->buf; #define X(a) do { put_u32(p, ctx->h##a); p += 4; } while(0) X(0); X(1); X(2); X(3); X(4); #undef X return ctx->buf; }