Age | Commit message (Collapse) | Author |
|
|
|
|
|
|
|
The seqno request retransmission handling was tracking the destination
that a forwarded request was being sent to and always retransmitting to
that same destination. This is unnecessary because we only need to
retransmit requests we originate ourselves, not those we forward on
behalf of others; in fact retransmitting on behalf of others can lead to
exponential multiplication of requests, which would be bad.
So rework the seqno request tracking so that instead of storing the
destination of a request, we just track whether it was a request that we
forwarded on behalf of another node, or if it was a request we originated
ourselves. Forwarded requests are not retransmitted, they are only used
for duplicate suppression, and for triggering an update when satisfied.
If we end up originating a request that we previously forwarded, we
"upgrade" the old request and restart the retransmit counter.
One complication with this is that requests sent in response to unfeasible
updates (section 3.8.2.2 of the RFC) have to be sent as unicast to a
particular peer. However, we don't really need to retransmit those as
there's no starvation when sending such a request; so we just change
such requests to be one-off unicast requests that are not subject to
retransmission or duplicate suppression. This is the same behaviour as
babeld has for such requests.
Minor changes from committer.
|
|
Thanks Johannes Moos for the suggestion.
|
|
The effective keepalive time now scales relative to the negotiated
hold time, to maintain proportion between the keepalive time and the
hold time. This avoids issues when both keepalive and hold times
were configured, the hold time was negotiated to a smaller value,
but the keepalive time stayed the same.
Add new options 'min hold time' and 'min keepalive time', which reject
session attempts with too small hold time.
Improve validation of config options an their documentation.
Thanks to Alexander Zubkov and Sergei Goriunov for suggestions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Add BGP channel option 'next hop prefer global' that modifies BGP
recursive next hop resolution to use global next hop IPv6 address instead
of link-local next hop IPv6 address for immediate next hop of received
routes.
|
|
table
|
|
In principle, the channel list is a list of parent struct proto and can
contain general structures of type struct channel, That is useful e.g.
for adding MPLS channels to BGP.
|
|
- When next hop is reset to local IP, we should remove BGP label stack,
as it is related to original next hop
- BGP next hop or immediate next hop from one VRF should not be passed
to another VRF, as they are different IP namespaces
|
|
|
|
closes #16
closes #17
closes #18
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
This allows for setting default table values at the beginning of config
file before "master4" and "master6" tables are initialized.
|
|
|
|
|
|
|
|
|
|
|
|
infinity
|
|
Had to fix route source locking inside BGP export table as we need to
keep the route sources properly allocated until even last BGP pending
update is sent out, therefore the export table printout is accurate.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
There were more conflicts that I'd like to see, most notably in route
export. If a bisect identifies this commit with something related, it
may be simply true that this commit introduces that bug. Let's hope it
doesn't happen.
|
|
The invalid routes were filtered out before they could ever get
exported, yet some of the routines need them available, e.g. for
display or import reload.
Now the invalid routes are properly exported and dropped in channel
export routines instead.
|
|
|
|
|
|
|
|
Add support for bgp_otc in filters and warning for configuration
inside confederations.
|
|
For BGP LLGR purposes, there was an API allowing a protocol to directly
modify their stale routes in table before flushing them. This API was
called by the table prune routine which violates the future locking
requirements.
Instead of this, BGP now requests a special route export and reimports
these routes into the table, allowing for asynchronous execution without
locking the table on export.
|
|
Until now, we were marking routes as REF_STALE and REF_DISCARD to
cleanup old routes after route refresh. This needed a synchronous route
table walk at both beginning and the end of route refresh routine,
marking the routes by the flags.
We avoid these walks by using a stale counter. Every route contains:
u8 stale_cycle;
Every import hook contains:
u8 stale_set;
u8 stale_valid;
u8 stale_pruned;
u8 stale_pruning;
In base_state, stale_set == stale_valid == stale_pruned == stale_pruning
and all routes' stale_cycle also have the same value.
The route refresh looks like follows:
+ ----------- + --------- + ----------- + ------------- + ------------ +
| | stale_set | stale_valid | stale_pruning | stale_pruned |
| Base | x | x | x | x |
| Begin | x+1 | x | x | x |
... now routes are being inserted with stale_cycle == (x+1)
| End | x+1 | x+1 | x | x |
... now table pruning routine is scheduled
| Prune begin | x+1 | x+1 | x+1 | x |
... now routes with stale_cycle not between stale_set and stale_valid
are deleted
| Prune end | x+1 | x+1 | x+1 | x+1 |
+ ----------- + --------- + ----------- + ------------- + ------------ +
The pruning routine is asynchronous and may have high latency in
high-load environments. Therefore, multiple route refresh requests may
happen before the pruning routine starts, leading to this situation:
| Prune begin | x+k | x+k | x -> x+k | x |
... or even
| Prune begin | x+k+1 | x+k | x -> x+k | x |
... if the prune event starts while another route refresh is running.
In such a case, the pruning routine still deletes routes not fitting
between stale_set and and stale_valid, effectively pruning the remnants
of all unpruned route refreshes from before:
| Prune end | x+k | x+k | x+k | x+k |
In extremely rare cases, there may happen too many route refreshes
before any route prune routine finishes. If the difference between
stale_valid and stale_pruned becomes more than 128 when requesting for
another route refresh, the routine walks the table synchronously and
resets all the stale values to a base state, while logging a warning.
|