Age | Commit message (Collapse) | Author |
|
|
|
For now, all route attributes are stored as eattrs in ea_list. This
should make route manipulation easier and it also allows for a layered
approach of route attributes where updates from filters will be stored
as an overlay over the previous version.
|
|
validation result out.
As there is either a nexthop or another destination specification
(or othing in case of ROAs and Flowspec), it may be merged together.
This code is somehow quirky and should be replaced in future by better
implementation of nexthop.
Also flowspec validation result has its own attribute now as it doesn't
have anything to do with route nexthop.
|
|
|
|
This doesn't do anything more than to put the whole structure inside
adata. The overall performance is certainly going downhill; we'll
optimize this later.
Anyway, this is one of the latest items inside rta and in several
commits we may drop rta completely and move to eattrs-only routes.
|
|
The prefix hash table in BGP used the same hash function as the rtable.
When a batch of routes are exported during feed/flush to the BGP, they
all have similar hash values, so they are all crowded in a few slots in
the BGP prefix table (which is much smaller - around the size of the
batch - and uses higher bits from hash values), making it much slower due
to excessive collisions. Use a different hash function to avoid this.
Also, increase the batch size to fill 4k BGP packets and increase minimum
BGP bucket and prefix hash sizes to avoid back and forth resizing during
flushes.
This leads to order of magnitude faster flushes (on my test data).
|
|
|
|
|
|
|
|
|
|
|
|
Changes in internal API:
* Every route attribute must be defined as struct ea_class somewhere.
* Registration of route attributes known at startup must be done by
ea_register_init() from protocol build functions.
* Every attribute has now its symbol registered in a global symbol table
defined as SYM_ATTRIBUTE
* All attribute ID's are dynamically allocated.
* Attribute value custom formatting hook is defined in the ea_class.
* Attribute names are the same for display and filters, always prefixed
by protocol name.
Also added some unit testing code for filters with route attributes.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Conflicts:
nest/rt-table.c
|
|
Conflicts:
nest/rt-table.c
|
|
Conflicts:
nest/route.h
nest/rt-table.c
|
|
Conflicts:
nest/rt-table.c
|
|
|
|
|
|
|
|
compatibility
|
|
|
|
Conflicts:
proto/bgp/attrs.c
proto/pipe/pipe.c
|
|
|
|
The prune loop may may rebuild the prefix trie and therefore invalidate
walk state for asynchronous walks (used in 'show route in' cmd). Fix it
by adding locking that keeps the old trie in memory until current walks
are done.
In future this could be improved by rebuilding trie walk states (by
lookup for last found prefix) after the prefix trie rebuild.
|
|
When rtable is pruned and network fib nodes are removed, we also need to
prune prefix trie. Unfortunately, rebuilding prefix trie takes long time
(got about 400 ms for 1M networks), so must not be atomic, we have to
rebuild a new trie while current one is still active. That may require
some considerable amount of temporary memory, so we do that only if
we expect significant trie size reduction.
|
|
Implement flowspec validation procedure as described in RFC 8955 sec. 6
and RFC 9117. The Validation procedure enforces that only routers in the
forwarding path for a network can originate flowspec rules for that
network.
The patch adds new mechanism for tracking inter-table dependencies, which
is necessary as the flowspec validation depends on IP routes, and flowspec
rules must be revalidated when best IP routes change.
The validation procedure is disabled by default and requires that
relevant IP table uses trie, as it uses interval queries for subnets.
|
|
Allow to specify sorted flag, trie fla, and min/max settle time.
Also do not enable trie by default, it must be explicitly enabled.
|
|
Attach a prefix trie to IP/VPN/ROA tables. Use it for net_route() and
net_roa_check(). This leads to 3-5x speedups for IPv4 and 5-10x
speedup for IPv6 of these calls.
TODO:
- Rebuild the trie during rt_prune_table()
- Better way to avoid trie_add_prefix() in net_get() for existing tables
- Make it configurable (?)
|
|
|
|
|
|
|
|
|
|
This commit prevents use-after-free of routes belonging to protocols
which have been already destroyed, delaying also all the protocols'
shutdown until all of their routes have been finally propagated through
all the pipes down to the appropriate exports.
The use-after-free was somehow hypothetic yet theoretically possible in
rare conditions, when one BGP protocol authors a lot of routes and the
user deletes that protocol by reconfiguring in the same time as next hop
update is requested, causing rte_better() to be called on a
not-yet-pruned network prefix while the owner protocol has been already
freed.
In parallel execution environments, this would happen an inter-thread
use-after-free, causing possible heisenbugs or other nasty problems.
|
|
|
|
congestion
|
|
|
|
This basically means that:
* there are some more levels of indirection and asynchronicity, mostly
in cleanup procedures, requiring correct lock ordering
* all the internal table operations (prune, next hop update) are done
without blocking the other parts of BIRD
* the protocols may get their own loops very soon
|
|
There is a simple universal IO loop, taking care of events, timers and
sockets. Primarily, one instance of a protocol should use exactly one IO
loop to do all its work, as is now done in BFD.
Contrary to previous versions, the loop is now launched and cleaned by
the nest/proto.c code, allowing for a protocol to just request its own
loop by setting the loop's lock order in config higher than the_bird.
It is not supported nor checked if any protocol changed the requested
lock order in reconfigure. No protocol should do it at all.
|
|
To allow for multithreaded execution, we need to break the import-export
chain and buffer the exports before actually processing them.
|
|
In some specific configurations, it was possible to send BIRD into an
infinite loop of recursive next hop resolution. This was caused by route
priority inversion.
To prevent priority inversions affecting other next hops, we simply
refuse to resolve any next hop if the best route for the matching prefix
is recursive or any other route with the same preference is recursive.
Next hop resolution doesn't change route priority, therefore it is
perfectly OK to resolve BGP next hops e.g. by an OSPF route, yet if the
same (or covering) prefix is also announced by iBGP, by retraction of
the OSPF route we would get a possible priority inversion.
|
|
The corked procedure gets a callback when uncorked. Supported by table
maintenance routines and also BGP.
|
|
* internal tables are now more standalone, having their own import and
export hooks
* route refresh/reload uses stale counter instead of stale flag,
allowing to drop walking the table at the beginning
* route modify (by BGP LLGR) is now done by a special refeed hook,
reimporting the modified routes directly without filters
|
|
The former rt_event is dropped in favour of separate table events.
This allows for selective corking of NHU and prune.
|
|
Channels have now included rt_import_req and rt_export_req to hook into
the table instead of just one list node. This will (in future) allow for:
* channel import and export bound to different tables
* more efficient pipe code (dropping most of the channel code)
* conversion of 'show route' to a special kind of export
* temporary static routes from CLI
The import / export states are also updated to the new algorithms.
|