diff options
Diffstat (limited to 'lib')
-rw-r--r-- | lib/Modules | 6 | ||||
-rw-r--r-- | lib/sha1.c | 342 | ||||
-rw-r--r-- | lib/sha1.h | 86 | ||||
-rw-r--r-- | lib/sha256.c | 467 | ||||
-rw-r--r-- | lib/sha256.h | 71 | ||||
-rw-r--r-- | lib/sha512.c | 614 | ||||
-rw-r--r-- | lib/sha512.h | 73 | ||||
-rw-r--r-- | lib/unaligned.h | 19 |
8 files changed, 1678 insertions, 0 deletions
diff --git a/lib/Modules b/lib/Modules index 7254df2d..745306d9 100644 --- a/lib/Modules +++ b/lib/Modules @@ -1,3 +1,9 @@ +sha256.c +sha256.h +sha512.c +sha512.h +sha1.c +sha1.h birdlib.h bitops.c bitops.h diff --git a/lib/sha1.c b/lib/sha1.c new file mode 100644 index 00000000..dd29b5fd --- /dev/null +++ b/lib/sha1.c @@ -0,0 +1,342 @@ +/* + * BIRD Library -- SHA-1 Hash Function (FIPS 180-1, RFC 3174) and HMAC-SHA-1 + * + * (c) 2015 CZ.NIC z.s.p.o. + * + * Based on the code from libucw-6.4 + * (c) 2008--2009 Martin Mares <mj@ucw.cz> + * + * Based on the code from libgcrypt-1.2.3, which is + * (c) 1998, 2001, 2002, 2003 Free Software Foundation, Inc. + * + * Can be freely distributed and used under the terms of the GNU GPL. + */ + +#include "lib/sha1.h" +#include "lib/unaligned.h" + +void +sha1_init(struct sha1_context *hd) +{ + hd->h0 = 0x67452301; + hd->h1 = 0xefcdab89; + hd->h2 = 0x98badcfe; + hd->h3 = 0x10325476; + hd->h4 = 0xc3d2e1f0; + hd->nblocks = 0; + hd->count = 0; +} + +/* + * Transform the message X which consists of 16 32-bit-words + */ +static void +sha1_transform(struct sha1_context *hd, const byte *data) +{ + u32 a,b,c,d,e,tm; + u32 x[16]; + + /* Get values from the chaining vars. */ + a = hd->h0; + b = hd->h1; + c = hd->h2; + d = hd->h3; + e = hd->h4; + +#ifdef CPU_BIG_ENDIAN + memcpy(x, data, 64); +#else + int i; + for (i = 0; i < 16; i++) + x[i] = get_u32(data+4*i); +#endif + +#define K1 0x5A827999L +#define K2 0x6ED9EBA1L +#define K3 0x8F1BBCDCL +#define K4 0xCA62C1D6L +#define F1(x,y,z) ( z ^ ( x & ( y ^ z ) ) ) +#define F2(x,y,z) ( x ^ y ^ z ) +#define F3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) ) +#define F4(x,y,z) ( x ^ y ^ z ) + +#define M(i) (tm = x[i&0x0f] ^ x[(i-14)&0x0f] ^ x[(i-8)&0x0f] ^ x[(i-3)&0x0f], (x[i&0x0f] = ROL(tm, 1))) + +/* Bitwise rotation of an unsigned int to the left **/ +#define ROL(x, bits) (((x) << (bits)) | ((uint)(x) >> (sizeof(uint)*8 - (bits)))) + + #define R(a, b, c, d, e, f, k, m) \ + do \ + { \ + e += ROL(a, 5) + f(b, c, d) + k + m; \ + b = ROL( b, 30 ); \ + } while(0) + + R( a, b, c, d, e, F1, K1, x[ 0] ); + R( e, a, b, c, d, F1, K1, x[ 1] ); + R( d, e, a, b, c, F1, K1, x[ 2] ); + R( c, d, e, a, b, F1, K1, x[ 3] ); + R( b, c, d, e, a, F1, K1, x[ 4] ); + R( a, b, c, d, e, F1, K1, x[ 5] ); + R( e, a, b, c, d, F1, K1, x[ 6] ); + R( d, e, a, b, c, F1, K1, x[ 7] ); + R( c, d, e, a, b, F1, K1, x[ 8] ); + R( b, c, d, e, a, F1, K1, x[ 9] ); + R( a, b, c, d, e, F1, K1, x[10] ); + R( e, a, b, c, d, F1, K1, x[11] ); + R( d, e, a, b, c, F1, K1, x[12] ); + R( c, d, e, a, b, F1, K1, x[13] ); + R( b, c, d, e, a, F1, K1, x[14] ); + R( a, b, c, d, e, F1, K1, x[15] ); + R( e, a, b, c, d, F1, K1, M(16) ); + R( d, e, a, b, c, F1, K1, M(17) ); + R( c, d, e, a, b, F1, K1, M(18) ); + R( b, c, d, e, a, F1, K1, M(19) ); + R( a, b, c, d, e, F2, K2, M(20) ); + R( e, a, b, c, d, F2, K2, M(21) ); + R( d, e, a, b, c, F2, K2, M(22) ); + R( c, d, e, a, b, F2, K2, M(23) ); + R( b, c, d, e, a, F2, K2, M(24) ); + R( a, b, c, d, e, F2, K2, M(25) ); + R( e, a, b, c, d, F2, K2, M(26) ); + R( d, e, a, b, c, F2, K2, M(27) ); + R( c, d, e, a, b, F2, K2, M(28) ); + R( b, c, d, e, a, F2, K2, M(29) ); + R( a, b, c, d, e, F2, K2, M(30) ); + R( e, a, b, c, d, F2, K2, M(31) ); + R( d, e, a, b, c, F2, K2, M(32) ); + R( c, d, e, a, b, F2, K2, M(33) ); + R( b, c, d, e, a, F2, K2, M(34) ); + R( a, b, c, d, e, F2, K2, M(35) ); + R( e, a, b, c, d, F2, K2, M(36) ); + R( d, e, a, b, c, F2, K2, M(37) ); + R( c, d, e, a, b, F2, K2, M(38) ); + R( b, c, d, e, a, F2, K2, M(39) ); + R( a, b, c, d, e, F3, K3, M(40) ); + R( e, a, b, c, d, F3, K3, M(41) ); + R( d, e, a, b, c, F3, K3, M(42) ); + R( c, d, e, a, b, F3, K3, M(43) ); + R( b, c, d, e, a, F3, K3, M(44) ); + R( a, b, c, d, e, F3, K3, M(45) ); + R( e, a, b, c, d, F3, K3, M(46) ); + R( d, e, a, b, c, F3, K3, M(47) ); + R( c, d, e, a, b, F3, K3, M(48) ); + R( b, c, d, e, a, F3, K3, M(49) ); + R( a, b, c, d, e, F3, K3, M(50) ); + R( e, a, b, c, d, F3, K3, M(51) ); + R( d, e, a, b, c, F3, K3, M(52) ); + R( c, d, e, a, b, F3, K3, M(53) ); + R( b, c, d, e, a, F3, K3, M(54) ); + R( a, b, c, d, e, F3, K3, M(55) ); + R( e, a, b, c, d, F3, K3, M(56) ); + R( d, e, a, b, c, F3, K3, M(57) ); + R( c, d, e, a, b, F3, K3, M(58) ); + R( b, c, d, e, a, F3, K3, M(59) ); + R( a, b, c, d, e, F4, K4, M(60) ); + R( e, a, b, c, d, F4, K4, M(61) ); + R( d, e, a, b, c, F4, K4, M(62) ); + R( c, d, e, a, b, F4, K4, M(63) ); + R( b, c, d, e, a, F4, K4, M(64) ); + R( a, b, c, d, e, F4, K4, M(65) ); + R( e, a, b, c, d, F4, K4, M(66) ); + R( d, e, a, b, c, F4, K4, M(67) ); + R( c, d, e, a, b, F4, K4, M(68) ); + R( b, c, d, e, a, F4, K4, M(69) ); + R( a, b, c, d, e, F4, K4, M(70) ); + R( e, a, b, c, d, F4, K4, M(71) ); + R( d, e, a, b, c, F4, K4, M(72) ); + R( c, d, e, a, b, F4, K4, M(73) ); + R( b, c, d, e, a, F4, K4, M(74) ); + R( a, b, c, d, e, F4, K4, M(75) ); + R( e, a, b, c, d, F4, K4, M(76) ); + R( d, e, a, b, c, F4, K4, M(77) ); + R( c, d, e, a, b, F4, K4, M(78) ); + R( b, c, d, e, a, F4, K4, M(79) ); + + /* Update chaining vars. */ + hd->h0 += a; + hd->h1 += b; + hd->h2 += c; + hd->h3 += d; + hd->h4 += e; +} + +/* + * Update the message digest with the contents + * of INBUF with length INLEN. + */ +void +sha1_update(struct sha1_context *hd, const byte *inbuf, uint inlen) +{ + if (hd->count == 64) /* flush the buffer */ + { + sha1_transform(hd, hd->buf); + hd->count = 0; + hd->nblocks++; + } + if (!inbuf) + return; + + if (hd->count) + { + for (; inlen && hd->count < 64; inlen--) + hd->buf[hd->count++] = *inbuf++; + sha1_update( hd, NULL, 0 ); + if(!inlen) + return; + } + + while (inlen >= 64) + { + sha1_transform(hd, inbuf); + hd->count = 0; + hd->nblocks++; + inlen -= 64; + inbuf += 64; + } + for (; inlen && hd->count < 64; inlen--) + hd->buf[hd->count++] = *inbuf++; +} + +/* + * The routine final terminates the computation and + * returns the digest. + * The handle is prepared for a new cycle, but adding bytes to the + * handle will the destroy the returned buffer. + * Returns: 20 bytes representing the digest. + */ +byte * +sha1_final(struct sha1_context *hd) +{ + u32 t, msb, lsb; + u32 *p; + + sha1_update(hd, NULL, 0); /* flush */; + + t = hd->nblocks; + /* multiply by 64 to make a byte count */ + lsb = t << 6; + msb = t >> 26; + /* add the count */ + t = lsb; + if ((lsb += hd->count) < t) + msb++; + /* multiply by 8 to make a bit count */ + t = lsb; + lsb <<= 3; + msb <<= 3; + msb |= t >> 29; + + if (hd->count < 56) /* enough room */ + { + hd->buf[hd->count++] = 0x80; /* pad */ + while (hd->count < 56) + hd->buf[hd->count++] = 0; /* pad */ + } + else /* need one extra block */ + { + hd->buf[hd->count++] = 0x80; /* pad character */ + while (hd->count < 64) + hd->buf[hd->count++] = 0; + sha1_update(hd, NULL, 0); /* flush */; + memset(hd->buf, 0, 56 ); /* fill next block with zeroes */ + } + /* append the 64 bit count */ + hd->buf[56] = msb >> 24; + hd->buf[57] = msb >> 16; + hd->buf[58] = msb >> 8; + hd->buf[59] = msb ; + hd->buf[60] = lsb >> 24; + hd->buf[61] = lsb >> 16; + hd->buf[62] = lsb >> 8; + hd->buf[63] = lsb ; + sha1_transform(hd, hd->buf); + + p = (u32*) hd->buf; +#define X(a) do { put_u32(p, hd->h##a); p++; } while(0) + X(0); + X(1); + X(2); + X(3); + X(4); +#undef X + + return hd->buf; +} + + +/* + * SHA1-HMAC + */ + +/* + * Shortcut function which puts the hash value of the supplied buffer + * into outbuf which must have a size of 20 bytes. + */ +void +sha1_hash_buffer(byte *outbuf, const byte *buffer, uint length) +{ + struct sha1_context ctx; + + sha1_init(&ctx); + sha1_update(&ctx, buffer, length); + memcpy(outbuf, sha1_final(&ctx), SHA1_SIZE); +} + +void +sha1_hmac_init(struct sha1_hmac_context *ctx, const byte *key, uint keylen) +{ + byte keybuf[SHA1_BLOCK_SIZE], buf[SHA1_BLOCK_SIZE]; + + /* Hash the key if necessary */ + if (keylen <= SHA1_BLOCK_SIZE) + { + memcpy(keybuf, key, keylen); + bzero(keybuf + keylen, SHA1_BLOCK_SIZE - keylen); + } + else + { + sha1_hash_buffer(keybuf, key, keylen); + bzero(keybuf + SHA1_SIZE, SHA1_BLOCK_SIZE - SHA1_SIZE); + } + + /* Initialize the inner digest */ + sha1_init(&ctx->ictx); + int i; + for (i = 0; i < SHA1_BLOCK_SIZE; i++) + buf[i] = keybuf[i] ^ 0x36; + sha1_update(&ctx->ictx, buf, SHA1_BLOCK_SIZE); + + /* Initialize the outer digest */ + sha1_init(&ctx->octx); + for (i = 0; i < SHA1_BLOCK_SIZE; i++) + buf[i] = keybuf[i] ^ 0x5c; + sha1_update(&ctx->octx, buf, SHA1_BLOCK_SIZE); +} + +void +sha1_hmac_update(struct sha1_hmac_context *ctx, const byte *data, uint datalen) +{ + /* Just update the inner digest */ + sha1_update(&ctx->ictx, data, datalen); +} + +byte *sha1_hmac_final(struct sha1_hmac_context *ctx) +{ + /* Finish the inner digest */ + byte *isha = sha1_final(&ctx->ictx); + + /* Finish the outer digest */ + sha1_update(&ctx->octx, isha, SHA1_SIZE); + return sha1_final(&ctx->octx); +} + +void +sha1_hmac(byte *outbuf, const byte *key, uint keylen, const byte *data, uint datalen) +{ + struct sha1_hmac_context hd; + sha1_hmac_init(&hd, key, keylen); + sha1_hmac_update(&hd, data, datalen); + byte *osha = sha1_hmac_final(&hd); + memcpy(outbuf, osha, SHA1_SIZE); +} diff --git a/lib/sha1.h b/lib/sha1.h new file mode 100644 index 00000000..425160a0 --- /dev/null +++ b/lib/sha1.h @@ -0,0 +1,86 @@ +/* + * BIRD Library -- SHA-1 Hash Function (FIPS 180-1, RFC 3174) and HMAC-SHA-1 + * + * (c) 2015 CZ.NIC z.s.p.o. + * + * Based on the code from libucw-6.4 + * (c) 2008--2009 Martin Mares <mj@ucw.cz> + * + * Based on the code from libgcrypt-1.2.3, which is + * (c) 1998, 2001, 2002, 2003 Free Software Foundation, Inc. + * + * Can be freely distributed and used under the terms of the GNU GPL. + */ + +#ifndef _BIRD_SHA1_H_ +#define _BIRD_SHA1_H_ + +#include "nest/bird.h" + +/* + * Internal SHA1 state. + * You should use it just as an opaque handle only. + */ +struct sha1_context { + u32 h0,h1,h2,h3,h4; + u32 nblocks; + byte buf[64]; + int count; +} ; + +void sha1_init(struct sha1_context *hd); /* Initialize new algorithm run in the @hd context. **/ +/* + * Push another @inlen bytes of data pointed to by @inbuf onto the + * SHA1 hash currently in @hd. You can call this any times you want on + * the same hash (and you do not need to reinitialize it by + * @sha1_init()). It has the same effect as concatenating all the data + * together and passing them at once. + */ +void sha1_update(struct sha1_context *hd, const byte *inbuf, uint inlen); +/* + * No more @sha1_update() calls will be done. This terminates the hash + * and returns a pointer to it. + * + * Note that the pointer points into data in the @hd context. If it ceases + * to exist, the pointer becomes invalid. + * + * To convert the hash to its usual hexadecimal representation, see + * <<string:mem_to_hex()>>. + */ +byte *sha1_final(struct sha1_context *hd); + +/* + * A convenience one-shot function for SHA1 hash. + * It is equivalent to this snippet of code: + * + * sha1_context hd; + * sha1_init(&hd); + * sha1_update(&hd, buffer, length); + * memcpy(outbuf, sha1_final(&hd), SHA1_SIZE); + */ +void sha1_hash_buffer(byte *outbuf, const byte *buffer, uint length); + +/* + * SHA1 HMAC message authentication. If you provide @key and @data, + * the result will be stored in @outbuf. + */ +void sha1_hmac(byte *outbuf, const byte *key, uint keylen, const byte *data, uint datalen); + +/* + * The HMAC also exists in a stream version in a way analogous to the + * plain SHA1. Pass this as a context. + */ +struct sha1_hmac_context { + struct sha1_context ictx; + struct sha1_context octx; +}; + +void sha1_hmac_init(struct sha1_hmac_context *hd, const byte *key, uint keylen); /* Initialize HMAC with context @hd and the given key. See sha1_init(). */ +void sha1_hmac_update(struct sha1_hmac_context *hd, const byte *data, uint datalen); /* Hash another @datalen bytes of data. See sha1_update(). */ +byte *sha1_hmac_final(struct sha1_hmac_context *hd); /* Terminate the HMAC and return a pointer to the allocated hash. See sha1_final(). */ + +#define SHA1_SIZE 20 /* Size of the SHA1 hash in its binary representation **/ +#define SHA1_HEX_SIZE 41 /* Buffer length for a string containing SHA1 in hexadecimal format. **/ +#define SHA1_BLOCK_SIZE 64 /* SHA1 splits input to blocks of this size. **/ + +#endif /* _BIRD_SHA1_H_ */ diff --git a/lib/sha256.c b/lib/sha256.c new file mode 100644 index 00000000..2d979f90 --- /dev/null +++ b/lib/sha256.c @@ -0,0 +1,467 @@ +/* + * BIRD Library -- SHA-256 and SHA-224 Hash Functions, + * HMAC-SHA-256 and HMAC-SHA-224 Functions + * + * (c) 2015 CZ.NIC z.s.p.o. + * + * Based on the code from libgcrypt-1.6.0, which is + * (c) 2003, 2006, 2008, 2009 Free Software Foundation, Inc. + * + * Can be freely distributed and used under the terms of the GNU GPL. + */ + +#include "lib/sha256.h" +#include "lib/unaligned.h" + +static uint sha256_transform(void *ctx, const byte *data, size_t nblks); + +void +sha256_init(struct sha256_context *ctx) +{ + ctx->h0 = 0x6a09e667; + ctx->h1 = 0xbb67ae85; + ctx->h2 = 0x3c6ef372; + ctx->h3 = 0xa54ff53a; + ctx->h4 = 0x510e527f; + ctx->h5 = 0x9b05688c; + ctx->h6 = 0x1f83d9ab; + ctx->h7 = 0x5be0cd19; + + ctx->nblocks = 0; + ctx->nblocks_high = 0; + ctx->count = 0; + ctx->blocksize = 64; + ctx->transform = sha256_transform; +} + +void +sha224_init(struct sha224_context *ctx) +{ + ctx->h0 = 0xc1059ed8; + ctx->h1 = 0x367cd507; + ctx->h2 = 0x3070dd17; + ctx->h3 = 0xf70e5939; + ctx->h4 = 0xffc00b31; + ctx->h5 = 0x68581511; + ctx->h6 = 0x64f98fa7; + ctx->h7 = 0xbefa4fa4; + + ctx->nblocks = 0; + ctx->nblocks_high = 0; + ctx->count = 0; + ctx->blocksize = 64; + ctx->transform = sha256_transform; +} + +/* (4.2) same as SHA-1's F1. */ +static inline u32 +f1(u32 x, u32 y, u32 z) +{ + return (z ^ (x & (y ^ z))); +} + +/* (4.3) same as SHA-1's F3 */ +static inline u32 +f3(u32 x, u32 y, u32 z) +{ + return ((x & y) | (z & (x|y))); +} + +/* Bitwise rotation of an uint to the right */ +static inline u32 ror(u32 x, int n) +{ + return ( (x >> (n&(32-1))) | (x << ((32-n)&(32-1))) ); +} + +/* (4.4) */ +static inline u32 +sum0(u32 x) +{ + return (ror(x, 2) ^ ror(x, 13) ^ ror(x, 22)); +} + +/* (4.5) */ +static inline u32 +sum1(u32 x) +{ + return (ror(x, 6) ^ ror(x, 11) ^ ror(x, 25)); +} + +/* + Transform the message X which consists of 16 32-bit-words. See FIPS + 180-2 for details. */ +#define S0(x) (ror((x), 7) ^ ror((x), 18) ^ ((x) >> 3)) /* (4.6) */ +#define S1(x) (ror((x), 17) ^ ror((x), 19) ^ ((x) >> 10)) /* (4.7) */ +#define R(a,b,c,d,e,f,g,h,k,w) \ + do \ + { \ + t1 = (h) + sum1((e)) + f1((e),(f),(g)) + (k) + (w); \ + t2 = sum0((a)) + f3((a),(b),(c)); \ + h = g; \ + g = f; \ + f = e; \ + e = d + t1; \ + d = c; \ + c = b; \ + b = a; \ + a = t1 + t2; \ + } while (0) + +/* + The SHA-256 core: Transform the message X which consists of 16 + 32-bit-words. See FIPS 180-2 for details. + */ +static uint +sha256_transform_block(struct sha256_context *ctx, const byte *data) +{ + static const u32 K[64] = { + 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, + 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, + 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, + 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, + 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, + 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, + 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, + 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, + 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, + 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, + 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, + 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, + 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, + 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, + 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, + 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 + }; + + u32 a,b,c,d,e,f,g,h,t1,t2; + u32 w[64]; + int i; + + a = ctx->h0; + b = ctx->h1; + c = ctx->h2; + d = ctx->h3; + e = ctx->h4; + f = ctx->h5; + g = ctx->h6; + h = ctx->h7; + + for (i = 0; i < 16; i++) + w[i] = get_u32(data + i * 4); + for (; i < 64; i++) + w[i] = S1(w[i-2]) + w[i-7] + S0(w[i-15]) + w[i-16]; + + for (i = 0; i < 64;) + { + t1 = h + sum1(e) + f1(e, f, g) + K[i] + w[i]; + t2 = sum0 (a) + f3(a, b, c); + d += t1; + h = t1 + t2; + + t1 = g + sum1(d) + f1(d, e, f) + K[i+1] + w[i+1]; + t2 = sum0 (h) + f3(h, a, b); + c += t1; + g = t1 + t2; + + t1 = f + sum1(c) + f1(c, d, e) + K[i+2] + w[i+2]; + t2 = sum0 (g) + f3(g, h, a); + b += t1; + f = t1 + t2; + + t1 = e + sum1(b) + f1(b, c, d) + K[i+3] + w[i+3]; + t2 = sum0 (f) + f3(f, g, h); + a += t1; + e = t1 + t2; + + t1 = d + sum1(a) + f1(a, b, c) + K[i+4] + w[i+4]; + t2 = sum0 (e) + f3(e, f, g); + h += t1; + d = t1 + t2; + + t1 = c + sum1(h) + f1(h, a, b) + K[i+5] + w[i+5]; + t2 = sum0 (d) + f3(d, e, f); + g += t1; + c = t1 + t2; + + t1 = b + sum1(g) + f1(g, h, a) + K[i+6] + w[i+6]; + t2 = sum0 (c) + f3(c, d, e); + f += t1; + b = t1 + t2; + + t1 = a + sum1(f) + f1(f, g, h) + K[i+7] + w[i+7]; + t2 = sum0 (b) + f3(b, c, d); + e += t1; + a = t1 + t2; + + i += 8; + } + + ctx->h0 += a; + ctx->h1 += b; + ctx->h2 += c; + ctx->h3 += d; + ctx->h4 += e; + ctx->h5 += f; + ctx->h6 += g; + ctx->h7 += h; + + return /*burn_stack*/ 74*4+32; +} +#undef S0 +#undef S1 +#undef R + +static uint +sha256_transform(void *ctx, const byte *data, size_t nblks) +{ + struct sha256_context *hd = ctx; + uint burn; + + do + { + burn = sha256_transform_block(hd, data); + data += 64; + } + while (--nblks); + + return burn; +} + +/* Common function to write a chunk of data to the transform function + of a hash algorithm. Note that the use of the term "block" does + not imply a fixed size block. Note that we explicitly allow to use + this function after the context has been finalized; the result does + not have any meaning but writing after finalize is sometimes + helpful to mitigate timing attacks. */ +void +sha256_update(struct sha256_context *ctx, const byte *in_buf, size_t in_len) +{ + const uint blocksize = ctx->blocksize; + size_t inblocks; + + if (sizeof(ctx->buf) < blocksize) + debug("BUG: in file %s at line %d", __FILE__ , __LINE__); + + if (ctx->count == blocksize) /* Flush the buffer. */ + { + ctx->transform(ctx, ctx->buf, 1); + ctx->count = 0; + if (!++ctx->nblocks) + ctx->nblocks_high++; + } + if (!in_buf) + return; + + if (ctx->count) + { + for (; in_len && ctx->count < blocksize; in_len--) + ctx->buf[ctx->count++] = *in_buf++; + sha256_update(ctx, NULL, 0); + if (!in_len) + return; + } + + if (in_len >= blocksize) + { + inblocks = in_len / blocksize; + ctx->transform(ctx, in_buf, inblocks); + ctx->count = 0; + ctx->nblocks_high += (ctx->nblocks + inblocks < inblocks); + ctx->nblocks += inblocks; + in_len -= inblocks * blocksize; + in_buf += inblocks * blocksize; + } + for (; in_len && ctx->count < blocksize; in_len--) + ctx->buf[ctx->count++] = *in_buf++; +} + +/* + The routine finally terminates the computation and returns the + digest. The handle is prepared for a new cycle, but adding bytes + to the handle will the destroy the returned buffer. Returns: 32 + bytes with the message the digest. */ +byte* +sha256_final(struct sha256_context *ctx) +{ + u32 t, th, msb, lsb; + byte *p; + + sha256_update(ctx, NULL, 0); /* flush */; + + t = ctx->nblocks; + if (sizeof t == sizeof ctx->nblocks) + th = ctx->nblocks_high; + else + th = 0; + + /* multiply by 64 to make a byte count */ + lsb = t << 6; + msb = (th << 6) | (t >> 26); + /* add the count */ + t = lsb; + if ((lsb += ctx->count) < t) + msb++; + /* multiply by 8 to make a bit count */ + t = lsb; + lsb <<= 3; + msb <<= 3; + msb |= t >> 29; + + if (ctx->count < 56) + { /* enough room */ + ctx->buf[ctx->count++] = 0x80; /* pad */ + while (ctx->count < 56) + ctx->buf[ctx->count++] = 0; /* pad */ + } + else + { /* need one extra block */ + ctx->buf[ctx->count++] = 0x80; /* pad character */ + while (ctx->count < 64) + ctx->buf[ctx->count++] = 0; + sha256_update(ctx, NULL, 0); /* flush */; + memset (ctx->buf, 0, 56 ); /* fill next block with zeroes */ + } + /* append the 64 bit count */ + put_u32(ctx->buf + 56, msb); + put_u32(ctx->buf + 60, lsb); + sha256_transform(ctx, ctx->buf, 1); + + p = ctx->buf; + +#define X(a) do { put_u32(p, ctx->h##a); p += 4; } while(0) + X(0); + X(1); + X(2); + X(3); + X(4); + X(5); + X(6); + X(7); +#undef X + + return ctx->buf; +} + + +/* + * SHA256-HMAC + */ + +static void +sha256_hash_buffer(byte *outbuf, const byte *buffer, size_t length) +{ + struct sha256_context hd_tmp; + + sha256_init(&hd_tmp); + sha256_update(&hd_tmp, buffer, length); + memcpy(outbuf, sha256_final(&hd_tmp), SHA256_SIZE); +} + +void +sha256_hmac_init(struct sha256_hmac_context *ctx, const byte *key, size_t keylen) +{ + byte keybuf[SHA256_BLOCK_SIZE], buf[SHA256_BLOCK_SIZE]; + + /* Hash the key if necessary */ + if (keylen <= SHA256_BLOCK_SIZE) + { + memcpy(keybuf, key, keylen); + bzero(keybuf + keylen, SHA256_BLOCK_SIZE - keylen); + } + else + { + sha256_hash_buffer(keybuf, key, keylen); + bzero(keybuf + SHA256_SIZE, SHA256_BLOCK_SIZE - SHA256_SIZE); + } + + /* Initialize the inner digest */ + sha256_init(&ctx->ictx); + int i; + for (i = 0; i < SHA256_BLOCK_SIZE; i++) + buf[i] = keybuf[i] ^ 0x36; + sha256_update(&ctx->ictx, buf, SHA256_BLOCK_SIZE); + + /* Initialize the outer digest */ + sha256_init(&ctx->octx); + for (i = 0; i < SHA256_BLOCK_SIZE; i++) + buf[i] = keybuf[i] ^ 0x5c; + sha256_update(&ctx->octx, buf, SHA256_BLOCK_SIZE); +} + +void sha256_hmac_update(struct sha256_hmac_context *ctx, const byte *buf, size_t buflen) +{ + /* Just update the inner digest */ + sha256_update(&ctx->ictx, buf, buflen); +} + +byte *sha256_hmac_final(struct sha256_hmac_context *ctx) +{ + /* Finish the inner digest */ + byte *isha = sha256_final(&ctx->ictx); + + /* Finish the outer digest */ + sha256_update(&ctx->octx, isha, SHA256_SIZE); + return sha256_final(&ctx->octx); +} + + +/* + * SHA224-HMAC + */ + +static void +sha224_hash_buffer(byte *outbuf, const byte *buffer, size_t length) +{ + struct sha224_context hd_tmp; + + sha224_init(&hd_tmp); + sha224_update(&hd_tmp, buffer, length); + memcpy(outbuf, sha224_final(&hd_tmp), SHA224_SIZE); +} + +void +sha224_hmac_init(struct sha224_hmac_context *ctx, const byte *key, size_t keylen) +{ + byte keybuf[SHA224_BLOCK_SIZE], buf[SHA224_BLOCK_SIZE]; + + /* Hash the key if necessary */ + if (keylen <= SHA224_BLOCK_SIZE) + { + memcpy(keybuf, key, keylen); + bzero(keybuf + keylen, SHA224_BLOCK_SIZE - keylen); + } + else + { + sha224_hash_buffer(keybuf, key, keylen); + bzero(keybuf + SHA224_SIZE, SHA224_BLOCK_SIZE - SHA224_SIZE); + } + + /* Initialize the inner digest */ + sha224_init(&ctx->ictx); + int i; + for (i = 0; i < SHA224_BLOCK_SIZE; i++) + buf[i] = keybuf[i] ^ 0x36; + sha224_update(&ctx->ictx, buf, SHA224_BLOCK_SIZE); + + /* Initialize the outer digest */ + sha224_init(&ctx->octx); + for (i = 0; i < SHA224_BLOCK_SIZE; i++) + buf[i] = keybuf[i] ^ 0x5c; + sha224_update(&ctx->octx, buf, SHA224_BLOCK_SIZE); +} + +void sha224_hmac_update(struct sha224_hmac_context *ctx, const byte *buf, size_t buflen) +{ + /* Just update the inner digest */ + sha256_update(&ctx->ictx, buf, buflen); +} + +byte *sha224_hmac_final(struct sha224_hmac_context *ctx) +{ + /* Finish the inner digest */ + byte *isha = sha224_final(&ctx->ictx); + + /* Finish the outer digest */ + sha224_update(&ctx->octx, isha, SHA224_SIZE); + return sha224_final(&ctx->octx); +} diff --git a/lib/sha256.h b/lib/sha256.h new file mode 100644 index 00000000..848d2176 --- /dev/null +++ b/lib/sha256.h @@ -0,0 +1,71 @@ +/* + * BIRD Library -- SHA-256 and SHA-224 Hash Functions, + * HMAC-SHA-256 and HMAC-SHA-224 Functions + * + * (c) 2015 CZ.NIC z.s.p.o. + * + * Based on the code from libgcrypt-1.6.0, which is + * (c) 2003, 2006, 2008, 2009 Free Software Foundation, Inc. + * + * Can be freely distributed and used under the terms of the GNU GPL. + */ + +#ifndef _BIRD_SHA256_H_ +#define _BIRD_SHA256_H_ + +#include "nest/bird.h" + +#define SHA224_SIZE 28 +#define SHA224_HEX_SIZE 57 +#define SHA224_BLOCK_SIZE 64 + +#define SHA256_SIZE 32 +#define SHA256_HEX_SIZE 65 +#define SHA256_BLOCK_SIZE 64 + +struct sha256_context { + u32 h0,h1,h2,h3,h4,h5,h6,h7; + byte buf[128]; /* 128 is for SHA384 and SHA512 support, otherwise for SHA224 and SHA256 is 64 enough */ + u32 nblocks; + u32 nblocks_high; + int count; + u32 blocksize; + uint (*transform)(void *c, const byte *blks, size_t nblks); +}; +#define sha224_context sha256_context /* aliasing 'struct sha224_context' to 'struct sha256_context' */ + +void sha256_init(struct sha256_context *ctx); +void sha224_init(struct sha224_context *ctx); + +void sha256_update(struct sha256_context *ctx, const byte *in_buf, size_t in_len); +static inline void sha224_update(struct sha224_context *ctx, const byte *in_buf, size_t in_len) +{ + sha256_update(ctx, in_buf, in_len); +} + +byte* sha256_final(struct sha256_context *ctx); +static inline byte* sha224_final(struct sha224_context *ctx) +{ + return sha256_final(ctx); +} + +/* + * HMAC-SHA256, HMAC-SHA224 + */ +struct sha256_hmac_context +{ + struct sha256_context ictx; + struct sha256_context octx; +}; +#define sha224_hmac_context sha256_hmac_context /* aliasing 'struct sha224_hmac_context' to 'struct sha256_hmac_context' */ + +void sha256_hmac_init(struct sha256_hmac_context *ctx, const byte *key, size_t keylen); +void sha224_hmac_init(struct sha224_hmac_context *ctx, const byte *key, size_t keylen); + +void sha256_hmac_update(struct sha256_hmac_context *ctx, const byte *buf, size_t buflen); +void sha224_hmac_update(struct sha224_hmac_context *ctx, const byte *buf, size_t buflen); + +byte *sha256_hmac_final(struct sha256_hmac_context *ctx); +byte *sha224_hmac_final(struct sha224_hmac_context *ctx); + +#endif /* _BIRD_SHA256_H_ */ diff --git a/lib/sha512.c b/lib/sha512.c new file mode 100644 index 00000000..e46e4c98 --- /dev/null +++ b/lib/sha512.c @@ -0,0 +1,614 @@ +/* + * BIRD Library -- SHA-512 and SHA-384 Hash Functions, + * HMAC-SHA-512 and HMAC-SHA-384 Functions + * + * (c) 2015 CZ.NIC z.s.p.o. + * + * Based on the code from libgcrypt-1.6.0, which is + * (c) 2003, 2006, 2008, 2009 Free Software Foundation, Inc. + * + * Can be freely distributed and used under the terms of the GNU GPL. + */ + +#include "lib/sha256.h" +#include "lib/sha512.h" +#include "lib/unaligned.h" + +static uint sha512_transform(void *context, const byte *data, size_t nblks); + +void +sha512_init(struct sha512_context *ctx) +{ + struct sha512_state *hd = &ctx->state; + + hd->h0 = UINT64_C(0x6a09e667f3bcc908); + hd->h1 = UINT64_C(0xbb67ae8584caa73b); + hd->h2 = UINT64_C(0x3c6ef372fe94f82b); + hd->h3 = UINT64_C(0xa54ff53a5f1d36f1); + hd->h4 = UINT64_C(0x510e527fade682d1); + hd->h5 = UINT64_C(0x9b05688c2b3e6c1f); + hd->h6 = UINT64_C(0x1f83d9abfb41bd6b); + hd->h7 = UINT64_C(0x5be0cd19137e2179); + + ctx->bctx.nblocks = 0; + ctx->bctx.nblocks_high = 0; + ctx->bctx.count = 0; + ctx->bctx.blocksize = 128; + ctx->bctx.transform = sha512_transform; +} + +void +sha384_init(struct sha384_context *ctx) +{ + struct sha512_state *hd = &ctx->state; + + hd->h0 = UINT64_C(0xcbbb9d5dc1059ed8); + hd->h1 = UINT64_C(0x629a292a367cd507); + hd->h2 = UINT64_C(0x9159015a3070dd17); + hd->h3 = UINT64_C(0x152fecd8f70e5939); + hd->h4 = UINT64_C(0x67332667ffc00b31); + hd->h5 = UINT64_C(0x8eb44a8768581511); + hd->h6 = UINT64_C(0xdb0c2e0d64f98fa7); + hd->h7 = UINT64_C(0x47b5481dbefa4fa4); + + ctx->bctx.nblocks = 0; + ctx->bctx.nblocks_high = 0; + ctx->bctx.count = 0; + ctx->bctx.blocksize = 128; + ctx->bctx.transform = sha512_transform; +} + +void sha512_update(struct sha512_context *ctx, const byte *in_buf, size_t in_len) +{ + sha256_update(&ctx->bctx, in_buf, in_len); +} + +static inline u64 +ROTR(u64 x, u64 n) +{ + return ((x >> n) | (x << (64 - n))); +} + +static inline u64 +Ch(u64 x, u64 y, u64 z) +{ + return ((x & y) ^ ( ~x & z)); +} + +static inline u64 +Maj(u64 x, u64 y, u64 z) +{ + return ((x & y) ^ (x & z) ^ (y & z)); +} + +static inline u64 +Sum0(u64 x) +{ + return (ROTR (x, 28) ^ ROTR (x, 34) ^ ROTR (x, 39)); +} + +static inline u64 +Sum1 (u64 x) +{ + return (ROTR (x, 14) ^ ROTR (x, 18) ^ ROTR (x, 41)); +} + +static const u64 k[] = +{ + UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd), + UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc), + UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019), + UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118), + UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe), + UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2), + UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1), + UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694), + UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3), + UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65), + UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483), + UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5), + UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210), + UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4), + UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725), + UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70), + UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926), + UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df), + UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8), + UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b), + UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001), + UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30), + UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910), + UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8), + UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53), + UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8), + UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb), + UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3), + UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60), + UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec), + UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9), + UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b), + UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207), + UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178), + UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6), + UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b), + UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493), + UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c), + UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a), + UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817) +}; + +/* + * Transform the message W which consists of 16 64-bit-words + */ +static uint +sha512_transform_block(struct sha512_state *hd, const byte *data) +{ + u64 a, b, c, d, e, f, g, h; + u64 w[16]; + int t; + + /* get values from the chaining vars */ + a = hd->h0; + b = hd->h1; + c = hd->h2; + d = hd->h3; + e = hd->h4; + f = hd->h5; + g = hd->h6; + h = hd->h7; + + for ( t = 0; t < 16; t++ ) + w[t] = get_u64(data + t * 8); + +#define S0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7)) +#define S1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6)) + + for (t = 0; t < 80 - 16; ) + { + u64 t1, t2; + + /* Performance on a AMD Athlon(tm) Dual Core Processor 4050e + with gcc 4.3.3 using gcry_md_hash_buffer of each 10000 bytes + initialized to 0,1,2,3...255,0,... and 1000 iterations: + + Not unrolled with macros: 440ms + Unrolled with macros: 350ms + Unrolled with inline: 330ms + */ +#if 0 /* Not unrolled. */ + t1 = h + Sum1 (e) + Ch(e, f, g) + k[t] + w[t%16]; + w[t%16] += S1 (w[(t - 2)%16]) + w[(t - 7)%16] + S0 (w[(t - 15)%16]); + t2 = Sum0 (a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + t1; + d = c; + c = b; + b = a; + a = t1 + t2; + t++; +#else /* Unrolled to interweave the chain variables. */ + t1 = h + Sum1 (e) + Ch(e, f, g) + k[t] + w[0]; + w[0] += S1 (w[14]) + w[9] + S0 (w[1]); + t2 = Sum0 (a) + Maj(a, b, c); + d += t1; + h = t1 + t2; + + t1 = g + Sum1 (d) + Ch(d, e, f) + k[t+1] + w[1]; + w[1] += S1 (w[15]) + w[10] + S0 (w[2]); + t2 = Sum0 (h) + Maj(h, a, b); + c += t1; + g = t1 + t2; + + t1 = f + Sum1 (c) + Ch(c, d, e) + k[t+2] + w[2]; + w[2] += S1 (w[0]) + w[11] + S0 (w[3]); + t2 = Sum0 (g) + Maj(g, h, a); + b += t1; + f = t1 + t2; + + t1 = e + Sum1 (b) + Ch(b, c, d) + k[t+3] + w[3]; + w[3] += S1 (w[1]) + w[12] + S0 (w[4]); + t2 = Sum0 (f) + Maj(f, g, h); + a += t1; + e = t1 + t2; + + t1 = d + Sum1 (a) + Ch(a, b, c) + k[t+4] + w[4]; + w[4] += S1 (w[2]) + w[13] + S0 (w[5]); + t2 = Sum0 (e) + Maj(e, f, g); + h += t1; + d = t1 + t2; + + t1 = c + Sum1 (h) + Ch(h, a, b) + k[t+5] + w[5]; + w[5] += S1 (w[3]) + w[14] + S0 (w[6]); + t2 = Sum0 (d) + Maj(d, e, f); + g += t1; + c = t1 + t2; + + t1 = b + Sum1 (g) + Ch(g, h, a) + k[t+6] + w[6]; + w[6] += S1 (w[4]) + w[15] + S0 (w[7]); + t2 = Sum0 (c) + Maj(c, d, e); + f += t1; + b = t1 + t2; + + t1 = a + Sum1 (f) + Ch(f, g, h) + k[t+7] + w[7]; + w[7] += S1 (w[5]) + w[0] + S0 (w[8]); + t2 = Sum0 (b) + Maj(b, c, d); + e += t1; + a = t1 + t2; + + t1 = h + Sum1 (e) + Ch(e, f, g) + k[t+8] + w[8]; + w[8] += S1 (w[6]) + w[1] + S0 (w[9]); + t2 = Sum0 (a) + Maj(a, b, c); + d += t1; + h = t1 + t2; + + t1 = g + Sum1 (d) + Ch(d, e, f) + k[t+9] + w[9]; + w[9] += S1 (w[7]) + w[2] + S0 (w[10]); + t2 = Sum0 (h) + Maj(h, a, b); + c += t1; + g = t1 + t2; + + t1 = f + Sum1 (c) + Ch(c, d, e) + k[t+10] + w[10]; + w[10] += S1 (w[8]) + w[3] + S0 (w[11]); + t2 = Sum0 (g) + Maj(g, h, a); + b += t1; + f = t1 + t2; + + t1 = e + Sum1 (b) + Ch(b, c, d) + k[t+11] + w[11]; + w[11] += S1 (w[9]) + w[4] + S0 (w[12]); + t2 = Sum0 (f) + Maj(f, g, h); + a += t1; + e = t1 + t2; + + t1 = d + Sum1 (a) + Ch(a, b, c) + k[t+12] + w[12]; + w[12] += S1 (w[10]) + w[5] + S0 (w[13]); + t2 = Sum0 (e) + Maj(e, f, g); + h += t1; + d = t1 + t2; + + t1 = c + Sum1 (h) + Ch(h, a, b) + k[t+13] + w[13]; + w[13] += S1 (w[11]) + w[6] + S0 (w[14]); + t2 = Sum0 (d) + Maj(d, e, f); + g += t1; + c = t1 + t2; + + t1 = b + Sum1 (g) + Ch(g, h, a) + k[t+14] + w[14]; + w[14] += S1 (w[12]) + w[7] + S0 (w[15]); + t2 = Sum0 (c) + Maj(c, d, e); + f += t1; + b = t1 + t2; + + t1 = a + Sum1 (f) + Ch(f, g, h) + k[t+15] + w[15]; + w[15] += S1 (w[13]) + w[8] + S0 (w[0]); + t2 = Sum0 (b) + Maj(b, c, d); + e += t1; + a = t1 + t2; + + t += 16; +#endif + } + + for (; t < 80; ) + { + u64 t1, t2; + +#if 0 /* Not unrolled. */ + t1 = h + Sum1 (e) + Ch(e, f, g) + k[t] + w[t%16]; + t2 = Sum0 (a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + t1; + d = c; + c = b; + b = a; + a = t1 + t2; + t++; +#else /* Unrolled to interweave the chain variables. */ + t1 = h + Sum1 (e) + Ch(e, f, g) + k[t] + w[0]; + t2 = Sum0 (a) + Maj(a, b, c); + d += t1; + h = t1 + t2; + + t1 = g + Sum1 (d) + Ch(d, e, f) + k[t+1] + w[1]; + t2 = Sum0 (h) + Maj(h, a, b); + c += t1; + g = t1 + t2; + + t1 = f + Sum1 (c) + Ch(c, d, e) + k[t+2] + w[2]; + t2 = Sum0 (g) + Maj(g, h, a); + b += t1; + f = t1 + t2; + + t1 = e + Sum1 (b) + Ch(b, c, d) + k[t+3] + w[3]; + t2 = Sum0 (f) + Maj(f, g, h); + a += t1; + e = t1 + t2; + + t1 = d + Sum1 (a) + Ch(a, b, c) + k[t+4] + w[4]; + t2 = Sum0 (e) + Maj(e, f, g); + h += t1; + d = t1 + t2; + + t1 = c + Sum1 (h) + Ch(h, a, b) + k[t+5] + w[5]; + t2 = Sum0 (d) + Maj(d, e, f); + g += t1; + c = t1 + t2; + + t1 = b + Sum1 (g) + Ch(g, h, a) + k[t+6] + w[6]; + t2 = Sum0 (c) + Maj(c, d, e); + f += t1; + b = t1 + t2; + + t1 = a + Sum1 (f) + Ch(f, g, h) + k[t+7] + w[7]; + t2 = Sum0 (b) + Maj(b, c, d); + e += t1; + a = t1 + t2; + + t1 = h + Sum1 (e) + Ch(e, f, g) + k[t+8] + w[8]; + t2 = Sum0 (a) + Maj(a, b, c); + d += t1; + h = t1 + t2; + + t1 = g + Sum1 (d) + Ch(d, e, f) + k[t+9] + w[9]; + t2 = Sum0 (h) + Maj(h, a, b); + c += t1; + g = t1 + t2; + + t1 = f + Sum1 (c) + Ch(c, d, e) + k[t+10] + w[10]; + t2 = Sum0 (g) + Maj(g, h, a); + b += t1; + f = t1 + t2; + + t1 = e + Sum1 (b) + Ch(b, c, d) + k[t+11] + w[11]; + t2 = Sum0 (f) + Maj(f, g, h); + a += t1; + e = t1 + t2; + + t1 = d + Sum1 (a) + Ch(a, b, c) + k[t+12] + w[12]; + t2 = Sum0 (e) + Maj(e, f, g); + h += t1; + d = t1 + t2; + + t1 = c + Sum1 (h) + Ch(h, a, b) + k[t+13] + w[13]; + t2 = Sum0 (d) + Maj(d, e, f); + g += t1; + c = t1 + t2; + + t1 = b + Sum1 (g) + Ch(g, h, a) + k[t+14] + w[14]; + t2 = Sum0 (c) + Maj(c, d, e); + f += t1; + b = t1 + t2; + + t1 = a + Sum1 (f) + Ch(f, g, h) + k[t+15] + w[15]; + t2 = Sum0 (b) + Maj(b, c, d); + e += t1; + a = t1 + t2; + + t += 16; +#endif + } + + /* Update chaining vars. */ + hd->h0 += a; + hd->h1 += b; + hd->h2 += c; + hd->h3 += d; + hd->h4 += e; + hd->h5 += f; + hd->h6 += g; + hd->h7 += h; + + return /* burn_stack */ (8 + 16) * sizeof(u64) + sizeof(u32) + 3 * sizeof(void*); +} + +static uint +sha512_transform(void *context, const byte *data, size_t nblks) +{ + struct sha512_context *ctx = context; + uint burn; + + do + { + burn = sha512_transform_block(&ctx->state, data) + 3 * sizeof(void*); + data += 128; + } + while(--nblks); + + return burn; +} + +/* The routine final terminates the computation and + * returns the digest. + * The handle is prepared for a new cycle, but adding bytes to the + * handle will the destroy the returned buffer. + * Returns: 64 bytes representing the digest. When used for sha384, + * we take the leftmost 48 of those bytes. + */ +byte * +sha512_final(struct sha512_context *ctx) +{ + u64 t, th, msb, lsb; + byte *p; + + sha256_update(&ctx->bctx, NULL, 0); /* flush */ ; + + t = ctx->bctx.nblocks; + /* if (sizeof t == sizeof ctx->bctx.nblocks) */ + th = ctx->bctx.nblocks_high; + /* else */ + /* th = ctx->bctx.nblocks >> 64; In case we ever use u128 */ + + /* multiply by 128 to make a byte count */ + lsb = t << 7; + msb = (th << 7) | (t >> 57); + /* add the count */ + t = lsb; + if ((lsb += ctx->bctx.count) < t) + msb++; + /* multiply by 8 to make a bit count */ + t = lsb; + lsb <<= 3; + msb <<= 3; + msb |= t >> 61; + + if (ctx->bctx.count < 112) + { /* enough room */ + ctx->bctx.buf[ctx->bctx.count++] = 0x80; /* pad */ + while(ctx->bctx.count < 112) + ctx->bctx.buf[ctx->bctx.count++] = 0; /* pad */ + } + else + { /* need one extra block */ + ctx->bctx.buf[ctx->bctx.count++] = 0x80; /* pad character */ + while(ctx->bctx.count < 128) + ctx->bctx.buf[ctx->bctx.count++] = 0; + sha256_update(&ctx->bctx, NULL, 0); /* flush */ ; + memset(ctx->bctx.buf, 0, 112); /* fill next block with zeroes */ + } + /* append the 128 bit count */ + put_u64(ctx->bctx.buf + 112, msb); + put_u64(ctx->bctx.buf + 120, lsb); + sha512_transform(ctx, ctx->bctx.buf, 1); + + p = ctx->bctx.buf; +#define X(a) do { put_u64(p, ctx->state.h##a); p += 8; } while(0) + X (0); + X (1); + X (2); + X (3); + X (4); + X (5); + /* Note that these last two chunks are included even for SHA384. + We just ignore them. */ + X (6); + X (7); +#undef X + + return ctx->bctx.buf; +} + + +/* + * SHA512-HMAC + */ + +static void +sha512_hash_buffer(byte *outbuf, const byte *buffer, size_t length) +{ + struct sha512_context hd_tmp; + + sha512_init(&hd_tmp); + sha512_update(&hd_tmp, buffer, length); + memcpy(outbuf, sha512_final(&hd_tmp), SHA512_SIZE); +} + +void +sha512_hmac_init(struct sha512_hmac_context *ctx, const byte *key, size_t keylen) +{ + byte keybuf[SHA512_BLOCK_SIZE], buf[SHA512_BLOCK_SIZE]; + + /* Hash the key if necessary */ + if (keylen <= SHA512_BLOCK_SIZE) + { + memcpy(keybuf, key, keylen); + bzero(keybuf + keylen, SHA512_BLOCK_SIZE - keylen); + } + else + { + sha512_hash_buffer(keybuf, key, keylen); + bzero(keybuf + SHA512_SIZE, SHA512_BLOCK_SIZE - SHA512_SIZE); + } + + /* Initialize the inner digest */ + sha512_init(&ctx->ictx); + int i; + for (i = 0; i < SHA512_BLOCK_SIZE; i++) + buf[i] = keybuf[i] ^ 0x36; + sha512_update(&ctx->ictx, buf, SHA512_BLOCK_SIZE); + + /* Initialize the outer digest */ + sha512_init(&ctx->octx); + for (i = 0; i < SHA512_BLOCK_SIZE; i++) + buf[i] = keybuf[i] ^ 0x5c; + sha512_update(&ctx->octx, buf, SHA512_BLOCK_SIZE); +} + +void sha512_hmac_update(struct sha512_hmac_context *ctx, const byte *buf, size_t buflen) +{ + /* Just update the inner digest */ + sha512_update(&ctx->ictx, buf, buflen); +} + +byte *sha512_hmac_final(struct sha512_hmac_context *ctx) +{ + /* Finish the inner digest */ + byte *isha = sha512_final(&ctx->ictx); + + /* Finish the outer digest */ + sha512_update(&ctx->octx, isha, SHA512_SIZE); + return sha512_final(&ctx->octx); +} + + +/* + * SHA384-HMAC + */ + +static void +sha384_hash_buffer(byte *outbuf, const byte *buffer, size_t length) +{ + struct sha384_context hd_tmp; + + sha384_init(&hd_tmp); + sha384_update(&hd_tmp, buffer, length); + memcpy(outbuf, sha384_final(&hd_tmp), SHA384_SIZE); +} + +void +sha384_hmac_init(struct sha384_hmac_context *ctx, const byte *key, size_t keylen) +{ + byte keybuf[SHA384_BLOCK_SIZE], buf[SHA384_BLOCK_SIZE]; + + /* Hash the key if necessary */ + if (keylen <= SHA384_BLOCK_SIZE) + { + memcpy(keybuf, key, keylen); + bzero(keybuf + keylen, SHA384_BLOCK_SIZE - keylen); + } + else + { + sha384_hash_buffer(keybuf, key, keylen); + bzero(keybuf + SHA384_SIZE, SHA384_BLOCK_SIZE - SHA384_SIZE); + } + + /* Initialize the inner digest */ + sha384_init(&ctx->ictx); + int i; + for (i = 0; i < SHA384_BLOCK_SIZE; i++) + buf[i] = keybuf[i] ^ 0x36; + sha384_update(&ctx->ictx, buf, SHA384_BLOCK_SIZE); + + /* Initialize the outer digest */ + sha384_init(&ctx->octx); + for (i = 0; i < SHA384_BLOCK_SIZE; i++) + buf[i] = keybuf[i] ^ 0x5c; + sha384_update(&ctx->octx, buf, SHA384_BLOCK_SIZE); +} + +void sha384_hmac_update(struct sha384_hmac_context *ctx, const byte *buf, size_t buflen) +{ + /* Just update the inner digest */ + sha384_update(&ctx->ictx, buf, buflen); +} + +byte *sha384_hmac_final(struct sha384_hmac_context *ctx) +{ + /* Finish the inner digest */ + byte *isha = sha384_final(&ctx->ictx); + + /* Finish the outer digest */ + sha384_update(&ctx->octx, isha, SHA384_SIZE); + return sha384_final(&ctx->octx); +} diff --git a/lib/sha512.h b/lib/sha512.h new file mode 100644 index 00000000..bd998152 --- /dev/null +++ b/lib/sha512.h @@ -0,0 +1,73 @@ +/* + * BIRD Library -- SHA-512 and SHA-384 Hash Functions, + * HMAC-SHA-512 and HMAC-SHA-384 Functions + * + * (c) 2015 CZ.NIC z.s.p.o. + * + * Based on the code from libgcrypt-1.6.0, which is + * (c) 2003, 2006, 2008, 2009 Free Software Foundation, Inc. + * + * Can be freely distributed and used under the terms of the GNU GPL. + */ + +#ifndef _BIRD_SHA512_H_ +#define _BIRD_SHA512_H_ + +#include "lib/sha256.h" + +#define SHA384_SIZE 48 +#define SHA384_HEX_SIZE 97 +#define SHA384_BLOCK_SIZE 128 + +#define SHA512_SIZE 64 +#define SHA512_HEX_SIZE 129 +#define SHA512_BLOCK_SIZE 128 + +struct sha512_state +{ + u64 h0, h1, h2, h3, h4, h5, h6, h7; +}; + +struct sha512_context +{ + struct sha256_context bctx; + struct sha512_state state; +}; +#define sha384_context sha512_context /* aliasing 'struct sha384_context' to 'struct sha512_context' */ + + +void sha512_init(struct sha512_context *ctx); +void sha384_init(struct sha384_context *ctx); + +void sha512_update(struct sha512_context *ctx, const byte *in_buf, size_t in_len); +static inline void sha384_update(struct sha384_context *ctx, const byte *in_buf, size_t in_len) +{ + sha512_update(ctx, in_buf, in_len); +} + +byte* sha512_final(struct sha512_context *ctx); +static inline byte* sha384_final(struct sha384_context *ctx) +{ + return sha512_final(ctx); +} + +/* + * HMAC-SHA512, HMAC-SHA384 + */ +struct sha512_hmac_context +{ + struct sha512_context ictx; + struct sha512_context octx; +} ; +#define sha384_hmac_context sha512_hmac_context /* aliasing 'struct sha384_hmac_context' to 'struct sha384_hmac_context' */ + +void sha512_hmac_init(struct sha512_hmac_context *ctx, const byte *key, size_t keylen); +void sha384_hmac_init(struct sha384_hmac_context *ctx, const byte *key, size_t keylen); + +void sha512_hmac_update(struct sha512_hmac_context *ctx, const byte *buf, size_t buflen); +void sha384_hmac_update(struct sha384_hmac_context *ctx, const byte *buf, size_t buflen); + +byte *sha512_hmac_final(struct sha512_hmac_context *ctx); +byte *sha384_hmac_final(struct sha384_hmac_context *ctx); + +#endif /* _BIRD_SHA512_H_ */ diff --git a/lib/unaligned.h b/lib/unaligned.h index af655204..a2dbae4f 100644 --- a/lib/unaligned.h +++ b/lib/unaligned.h @@ -35,6 +35,15 @@ get_u32(void *p) return ntohl(x); } +static inline u64 +get_u64(const void *p) +{ + u32 xh, xl; + memcpy(&xh, p, 4); + memcpy(&xl, p+4, 4); + return (((u64) ntohl(xh)) << 32) | ntohl(xl); +} + static inline void put_u16(void *p, u16 x) { @@ -49,4 +58,14 @@ put_u32(void *p, u32 x) memcpy(p, &x, 4); } +static inline void +put_u64(void *p, u64 x) +{ + u32 xh, xl; + xh = htonl(x >> 32); + xl = htonl((u32) x); + memcpy(p, &xh, 4); + memcpy(p+4, &xl, 4); +} + #endif |